1
|
Fu Q, Liu Y, Peng C, Muluh TA, Anayyat U, Liang L. Recent Advancement in Inhaled Nano-drug Delivery for Pulmonary, Nasal, and Nose-to-brain Diseases. Curr Drug Deliv 2025; 22:3-14. [PMID: 38275044 DOI: 10.2174/0115672018268047231207105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Pulmonary, nasal, and nose-to-brain diseases involve clinical approaches, such as bronchodilators, inhaled steroids, oxygen therapy, antibiotics, antihistamines, nasal steroids, decongestants, intranasal drug delivery, neurostimulation, and surgery to treat patients. However, systemic medicines have serious adverse effects, necessitating the development of inhaled formulations that allow precise drug delivery to the airways with minimum systemic drug exposure. Particle size, surface charge, biocompatibility, drug capacity, and mucoadhesive are unique chemical and physical features that must be considered for pulmonary and nasal delivery routes due to anatomical and permeability considerations. The traditional management of numerous chronic diseases has a variety of drawbacks. As a result, targeted medicine delivery systems that employ nanotechnology enhancer drug efficiency and optimize the overall outcome are created. The pulmonary route is one of the most essential targeted drug delivery systems because it allows the administering of drugs locally and systemically to the lungs, nasal cavity, and brain. Furthermore, the lungs' beneficial characteristics, such as their ability to inhibit first-pass metabolism and their thin epithelial layer, help treat several health complications. The potential to serve as noninvasive self-administration delivery sites of the lung and nasal routes is discussed in this script. New methods for treating respiratory and some systemic diseases with inhalation have been explored and highlight particular attention to using specialized nanocarriers for delivering various drugs via the nasal and pulmonary pathways. The design and development of inhaled nanomedicine for pulmonary, nasal, and respiratory medicine applications is a potential approach for clinical translation.
Collapse
Affiliation(s)
- Qiuxia Fu
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Yangjie Liu
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Cao Peng
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Umer Anayyat
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liu Liang
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan, China PRC
| |
Collapse
|
2
|
Singh S, Aparna, Sharma N, Gupta J, Kyada A, Nathiya D, Behl T, Gupta S, Anwer MK, Gulati M, Sachdeva M. Application of nano- and micro-particle-based approaches for selected bronchodilators in management of asthma. 3 Biotech 2024; 14:208. [PMID: 39184911 PMCID: PMC11343956 DOI: 10.1007/s13205-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a chronic inflammatory condition that affects the airways, posing a substantial health threat to a large number of people worldwide. Bronchodilators effectively alleviate symptoms of airway obstruction by inducing relaxation of the smooth muscles in the airways, thereby reducing breathlessness and enhancing overall quality of life. The drug targeting to lungs poses significant challenges; however, this issue can be resolved by employing nano- and micro-particles drug delivery systems. This review provides brief insights about underlying mechanisms of asthma, including the role of several inflammatory mediators that contribute to the development and progression of this disease. This article provides an overview of the physicochemical features, pharmacokinetics, and mechanism of action of particular groups of bronchodilators, including sympathomimetics, PDE-4 inhibitors (phosphodiesterase-4 inhibitors), methylxanthines, and anticholinergics. This study presents a detailed summary of the most recent developments in incorporation of bronchodilators in nano- and micro-particle-based delivery systems which include solid lipid nanoparticles, bilosomes, novasomes, liposomes, polymeric nano- and micro-particles. Specifically, it focuses on breakthroughs in the categories of sympathomimetics, methylxanthines, PDE-4 inhibitors, and anticholinergics. These medications have the ability to specifically target alveolar macrophages, leading to a higher concentration of pharmaceuticals in the lung tissues.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Aparna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406 Uttar Pradesh India
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, 360003 Gujarat India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Rajasthan, Jaipur India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| | - Sumeet Gupta
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207 Haryana India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 1444411 Punjab India
- Faculty of Health, ARCCIM, University of Technology Sydney, Ultimo, NSW 20227 Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Akram MW, Wong TW. Translational hurdles in anti-asthmatic nanomedicine development. Expert Opin Drug Deliv 2024; 21:987-989. [PMID: 39045614 DOI: 10.1080/17425247.2024.2385092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Muhammad Waseem Akram
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Zuo X, Gu Y, Guo X, Zheng W, Zheng H, An Y, Xu C, Wang F. Preparation of Budesonide-Loaded Liposomal Nanoparticles for Pulmonary Delivery and Their Therapeutic Effect in OVA-Induced Asthma in Mice. Int J Nanomedicine 2024; 19:673-688. [PMID: 38283200 PMCID: PMC10811423 DOI: 10.2147/ijn.s441345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
Purpose Inhaled corticosteroids, including budesonide (BUD), are widely employed for the treatment of asthma. However, the frequent use of corticosteroids is associated with numerous adverse effects and poses challenges to ongoing drug therapy and patient adherence. Budesonide liposomal nanoparticles (BUD-LNPs) were developed to improve the bioavailability of the drug and thereby improve the effectiveness of asthma treatment. Methods BUD-LNPs were prepared via thin-film hydration, and the characterizations, stability, and in vitro release of BUD-LNPs were studied. In vitro cellular uptake was observed by laser-scanning confocal microscope (LSCM) and flow cytometry. And the in vitro anti-inflammatory activity of BUD-LNPs was evaluated by measuring the expression of pro-inflammatory cytokines in activated macrophages. Besides, the accumulation time in the lung of drugs delivered via liposomal carriers and free drugs was compared in vivo. And the in vivo therapeutic efficacy of BUD-LNPs was assessed in OVA-induced asthmatic mice. Finally, in vivo biosafety assessment was performed. Results The particle size, PDI, and zeta potential of BUD-LNPs were 127.63±1.33 nm, 0.27±0.02, and 3.33±0.13 mV, respectively. BUD-LNPs exhibited excellent biosafety and anti-inflammatory activity in vitro. Furthermore, compared with the free drugs, the utilization of liposomal nano-vehicles for drugs delivery could effectively extend the duration of drugs accumulation in the pulmonary system. Additionally, treatment with BUD-LNPs alleviated airway hyperresponsiveness, reduced airway mucus secretion, and mitigated pulmonary inflammation in OVA-induced asthmatic mice. And the BUD-LNPs demonstrated superior therapeutic efficacy compared to free BUD. Conclusion BUD-LNPs was successfully prepared with excellent stability and sustained release for 24 h in vitro. The data of anti-inflammatory activity, asthma therapeutic effects and safety studies indicated that drug delivery mediated by liposomal nano-vehicles was a feasible and desirable strategy for medical strategy and showed great promise in the clinical therapy of asthma.
Collapse
Affiliation(s)
- Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Wenxue Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yiming An
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, People’s Republic of China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
6
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tackling the cytokine storm using advanced drug delivery in allergic airway disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
8
|
Wu L, Wang G, Zhou L, Mo M, Shi Y, Li B, Yin L, Zhao Q, Yang Y, Wu C, Xu Z, Zhu W. Molecular dynamics study on the behavior and binding mechanism of target protein Transgelin-2 with its agonist TSG12 for anti-asthma drug discovery. Comput Biol Med 2023; 153:106515. [PMID: 36610217 DOI: 10.1016/j.compbiomed.2022.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/02/2023]
Abstract
Transgelin-2 (TG2) is a novel promising therapeutic target for the treatment of asthma as it plays an important role in relaxing airway smooth muscles and reducing pulmonary resistance in asthma. The compound TSG12 is the only reported TG2 agonist with in vivo anti-asthma activity. However, the dynamic behavior and ligand binding sites of TG2 and its binding mechanism with TSG12 remain unclear. In this study, we performed 12.6 μs molecular dynamics (MD) simulations for apo-TG2 and TG2-TSG12 complex, respectively. The results suggested that the apo-TG2 has 4 most populated conformations, and that its binding of the agonist could expand the conformation distribution space of the protein. The simulations revealed 3 potential binding sites in 3 most populated conformations, one of which is induced by the agonist binding. Free energy decomposition uncovered 8 important residues with contributions stronger than -1 kcal/mol. Computational alanine scanning for the important residues by 100 ns conventional MD simulation for each mutated TG2-TSG12 complexes demonstrated that E27, R49 and F52 are essential residues for the agonist binding. These results should be helpful to understand the dynamic behavior of TG2 and its binding mechanism with the agonist TSG12, which could provide some structural insights into the novel mechanism for anti-asthma drug development.
Collapse
Affiliation(s)
- Leyun Wu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangpu Wang
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Liping Zhou
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengxia Mo
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Yulong Shi
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leimiao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Qiang Zhao
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongqing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Chengkun Wu
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China.
| | - Zhijian Xu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Borghi SM, Zaninelli TH, Carra JB, Heintz OK, Baracat MM, Georgetti SR, Vicentini FTMC, Verri WA, Casagrande R. Therapeutic Potential of Controlled Delivery Systems in Asthma: Preclinical Development of Flavonoid-Based Treatments. Pharmaceutics 2022; 15:pharmaceutics15010001. [PMID: 36678631 PMCID: PMC9865502 DOI: 10.3390/pharmaceutics15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Asthma is a chronic disease with increasing prevalence and incidence, manifested by allergic inflammatory reactions, and is life-threatening for patients with severe disease. Repetitive challenges with the allergens and limitation of treatment efficacy greatly dampens successful management of asthma. The adverse events related to several drugs currently used, such as corticosteroids and β-agonists, and the low rigorous adherence to preconized protocols likely compromises a more assertive therapy. Flavonoids represent a class of natural compounds with extraordinary antioxidant and anti-inflammatory properties, with their potential benefits already demonstrated for several diseases, including asthma. Advanced technology has been used in the pharmaceutical field to improve the efficacy and safety of drugs. Notably, there is also an increasing interest for the application of these techniques using natural products as active molecules. Flavones, flavonols, flavanones, and chalcones are examples of flavonoid compounds that were tested in controlled delivery systems for asthma treatment, and which achieved better treatment results in comparison to their free forms. This review aims to provide a comprehensive understanding of the development of novel controlled delivery systems to enhance the therapeutic potential of flavonoids as active molecules for asthma treatment.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-120, PR, Brazil
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jéssica B. Carra
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Olivia K. Heintz
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Marcela M. Baracat
- Department of Chemistry, State University of Londrina, Londrina 86057-970, PR, Brazil
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Sandra R. Georgetti
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Fabiana T. M. C. Vicentini
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto 14040-900, SP, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
- Correspondence: or (W.A.V.); or (R.C.); Tel.: +55-43-3371-4979 (W.A.V.); +55-43-3371-2476 (R.C.); Fax: +55-43-3371-4387 (W.A.V.)
| |
Collapse
|
10
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|
11
|
Zhang YB, Xu D, Bai L, Zhou YM, Zhang H, Cui YL. A Review of Non-Invasive Drug Delivery through Respiratory Routes. Pharmaceutics 2022; 14:1974. [PMID: 36145722 PMCID: PMC9506287 DOI: 10.3390/pharmaceutics14091974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
With rapid and non-invasive characteristics, the respiratory route of administration has drawn significant attention compared with the limitations of conventional routes. Respiratory delivery can bypass the physiological barrier to achieve local and systemic disease treatment. A scientometric analysis and review were used to analyze how respiratory delivery can contribute to local and systemic therapy. The literature data obtained from the Web of Science Core Collection database showed an increasing worldwide tendency toward respiratory delivery from 1998 to 2020. Keywords analysis suggested that nasal and pulmonary drug delivery are the leading research topics in respiratory delivery. Based on the results of scientometric analysis, the research hotspots mainly included therapy for central nervous systems (CNS) disorders (Parkinson's disease, Alzheimer's disease, depression, glioblastoma, and epilepsy), tracheal and bronchial or lung diseases (chronic obstructive pulmonary disease, asthma, acute lung injury or respiratory distress syndrome, lung cancer, and idiopathic pulmonary fibrosis), and systemic diseases (diabetes and COVID-19). The study of advanced preparations contained nano drug delivery systems of the respiratory route, drug delivery barriers investigation (blood-brain barrier, BBB), and chitosan-based biomaterials for respiratory delivery. These results provided researchers with future research directions related to respiratory delivery.
Collapse
Affiliation(s)
- Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|