1
|
Wu R, Zhu W, Shao F, Wang J, Li D, Tuo Z, Yoo KH, Wusiman D, Shu Z, Ge W, Yang Y, Ke M, Wei W, Heavey S, Cho WC, Feng D. Expanding horizons in theragnostics: from oncology to multidisciplinary applications. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-01971-7. [PMID: 40042756 DOI: 10.1007/s11547-025-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Theragnostics is the integration of treatment and diagnosis, involving a drug or technology that combines diagnostic imaging with targeted therapy. This approach utilizes imaging to identify specific biological targets, which are then used to deliver therapeutic effects for the benefit of patients. The effectiveness and potential of theragnostics in improving patient outcomes are supported by significant clinical trials and technological innovations. Theragnostics has demonstrated its capacity to deliver targeted and real-time interventions, making it adaptable to diverse clinical domains. Its applications range from visualizing and eradicating tumors to addressing complex neurological disorders and cardiovascular diseases. The integration of nanomaterials and advancements in molecular biology further enhance the capabilities of theragnostics, promising a future where treatments are highly personalized, and diseases are understood and managed at a molecular level previously unattainable. Our comprehensive overview focuses on the current advancements in theragnostics applications across different disease domains. We highlight the role of molecular imaging technologies, such as PET/CT scans, in early diagnosis and treatment. Additionally, we explore the potential of chemokines as molecular imaging targets in systemic inflammatory diseases and central nervous system pathologies. In conclusion, the progression of theragnostics represents a transformative phase in medical practice, providing new avenues for precise treatment and improved patient outcomes. Its multidisciplinary nature and continuous innovation have the potential to profoundly impact the future of medical research and clinical practice, as well as revolutionizing the treatment and management of a wide array of diseases.
Collapse
Affiliation(s)
- Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, West Lafayette, USA
- Purdue Institute for Cancer Research, Purdue University, Westlll Lafayette, IN, USA
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Wenjing Ge
- Department of Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
2
|
Peverelli M, Tarkin JM. Emerging PET radiotracers for vascular imaging. Rheumatology (Oxford) 2025; 64:i33-i37. [PMID: 40071433 PMCID: PMC11897704 DOI: 10.1093/rheumatology/keae635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/12/2024] [Indexed: 03/15/2025] Open
Abstract
Imaging plays an important role in the clinical management of patients with large-vessel vasculitis (LVV), both to confirm the diagnosis at the time of initial presentation and to identify disease relapses in individuals with established disease. The big advantage of PET imaging over other non-invasive imaging modalities is the ability to employ targeted radionuclide probes to localize and track cellular pathways, providing in vivo assessments of disease activity. While 18F-fluorodeoxyglucose (FDG) has good diagnostic accuracy for LVV, this tracer is taken up by all glucose metabolizing cells in the vessel wall and so non-specific arterial uptake that is often unrelated to inflammatory disease activity can occur in patients despite a good clinical response to treatment. Advances in PET imaging technology and methods such as delayed imaging protocols and quantitative parametric imaging have the potential to improve the diagnostic accuracy of 18F-FDG in LVV. However, there is nevertheless a real clinical need for new PET tracers that target specific immune cells and inflammatory processes to inform about underlying disease pathology and guide individualized treatments for LVV. Many emerging PET tracers developed initially for oncology or atherosclerosis imaging could provide useful measures of disease activity in LVV, including tracers targeted to receptors on monocytes/macrophages, T and B lymphocytes and other inflammatory cells implicated in the pathogenesis of the disease. This focused review will discuss several of the most promising emerging PET radionuclide tracers for imaging vascular inflammation.
Collapse
Affiliation(s)
- Marta Peverelli
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Kosmala A, Hasenauer N, Serfling SE, Michalski K, Fröhlich M, Dreher N, Hartrampf PE, Higuchi T, Buck AK, Weich A, Reiter T, Werner RA. C-X-C motif chemokine receptor 4-directed PET signal in the arterial tree is not consistently linked to calcified plaque burden and cardiovascular risk. Theranostics 2025; 15:804-814. [PMID: 39776816 PMCID: PMC11700869 DOI: 10.7150/thno.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose: To establish the extent, distribution and frequency of in-vivo vessel wall [68Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). Methods: 65 oncological patients undergoing [68Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined. We then investigated associations of vessel wall uptake with CAP burden, cardiovascular risk (CVRF and European Society of Cardiology [ESC] SCORE2/SCORE2-OP risk chart) and image noise (determined by coefficient of variation [CoV] from unaffected liver parenchyma). Results: We identified 1292 sites of high focal [68Ga]Ga-PentixaFor uptake (PentixaFor+ sites) in the vessel wall in 65/65 (100%) patients, with concomitant calcification in 385/1292 (29.8%) sites. There were no significant associations between vessel wall uptake and CAP burden (number of PentixaFor+ sites: r ≤ 0.18, P ≥ 0.14; PentixaFor+ TBR: r ≤ 0.08, P ≥ 0.54). The number of PentixaFor+ sites showed a moderate correlation with cardiovascular risk (ESC SCORE2/SCORE2-OP, r = 0.30; number of CVRF, r = 0.26; P = 0.04, respectively), but failed to reach significance for PentixaFor+ TBR (r ≤ 0.18, P ≥ 0.22). In univariable regression analysis, body mass index (odds ratio [OR] 1.08, 95%-confidence interval [CI] 1.02-1.14) and CoV (OR, 1.07; CI, 1.05-1.10) were linked to TBR and the number of PentixaFor+ sites (P < 0.01, respectively), while injected activity was only associated with the latter imaging parameter (OR, 0.99; CI, 0.98-1.00; P = 0.04). In multivariable regression, injected activity (OR, 1.00; CI, 0.99-1.00) and CoV (OR, 1.06; CI, 1.06-1.07) remained significantly associated with the number of PentixaFor+ sites (P < 0.01, respectively). CoV, however, was the only parameter significantly linked to PentixaFor+ TBR on multivariable analysis (OR, 1.02; CI, 1.01-1.03; P < 0.01). Conclusion: On a visual and quantitative level, high focal [68Ga]Ga-PentixaFor uptake in the arterial tree was not consistently linked to vessel wall calcification or cardiovascular risk. Image noise, however, may account for a substantial portion of apparent vessel wall uptake.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Natalie Hasenauer
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Kerstin Michalski
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Fröhlich
- Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Weich
- Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- NET-Zentrum Würzburg, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospital Würzburg, Würzburg, Germany
- Johns Hopkins School of Medicine, The Russell H Morgan Department of Radiology and Radiological Sciences, Baltimore, MD, United States
- Goethe University Frankfurt, University Hospital, Clinic for Diagnostic and Interventional Radiology and Nuclear Medicine, Department of Nuclear Medicine, Germany
| |
Collapse
|
4
|
Sabeghi P, Katal S, Chen M, Taravat F, Werner TJ, Saboury B, Gholamrezanezhad A, Alavi A. Update on Positron Emission Tomography/Magnetic Resonance Imaging: Cancer and Inflammation Imaging in the Clinic. Magn Reson Imaging Clin N Am 2023; 31:517-538. [PMID: 37741639 DOI: 10.1016/j.mric.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MRI is highly valuable, having made significant strides in overcoming technical challenges and offering unique advantages such as reduced radiation, precise data coregistration, and motion correction. Growing evidence highlights the value of PET/MRI in broad clinical aspects, including inflammatory and oncological imaging in adults, pregnant women, and pediatrics, potentially surpassing PET/CT. This newly integrated solution may be preferred over PET/CT in many clinical conditions. However, further technological advancements are required to facilitate its broader adoption as a routine diagnostic modality.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Sanaz Katal
- Medical Imaging Department of St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Michelle Chen
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Farzaneh Taravat
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Babak Saboury
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Wang M, Zhang J, Ma J, Liu L, Wang J, Zhang C. Imaging findings and clinical relevance of 68Ga-Pentixafor PET in atherosclerosis: a systematic review. BMC Med Imaging 2023; 23:166. [PMID: 37884885 PMCID: PMC10601147 DOI: 10.1186/s12880-023-01134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE We aimed to perform a qualitative synthesis of evidence on the role of 68Ga-Pentixafor PET in atherosclerosis. METHODS A systematic search of the PubMed and Embase databases for studies reporting the evaluation of atherosclerotic lesions by 68Ga-Pentixafor PET was performed with a search time frame from database creation to 2022-12-26. The diagnostic test evaluation tool QUADAS-2 was used to evaluate the quality of the included literature and to perform descriptive analyses of relevant outcome indicators. RESULTS A total of 6 studies with 280 patients were included. One study reported only imaging outcome metrics, while the other five studies reported imaging outcome metrics and clinical correlation metrics. For imaging outcomes, three studies reported imaging results for 68Ga-Pentixafor PET only, and the other three studies reported imaging results for comparative analysis of 68Ga-Pentixafor PET with 18F-FDG PET. For clinical correlation, three studies reported the correlation between tracer uptake and cardiovascular risk factors, one study reported the correlation between tracer uptake and plaque calcification, and one study reported the correlation between all three: tracer uptake, cardiovascular risk factors, and plaque calcification. CONCLUSION 68Ga-Pentixafor PET has a good imaging effect on atherosclerotic lesions, and it is a promising imaging modality that may replace 18F-FDG PET for atherosclerosis imaging in the future. In patients with atherosclerosis, there is a clear clinical correlation between cardiovascular risk factors, tracer uptake, and plaque calcification.
Collapse
Affiliation(s)
- Min Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China
| | - Jiayu Zhang
- Department of General Surgery (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jiao Ma
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China
| | - Liyi Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China
| | - Jia Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China
| | - Chunyin Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China.
| |
Collapse
|
6
|
Polyak A, Képes Z, Trencsényi G. Implant Imaging: Perspectives of Nuclear Imaging in Implant, Biomaterial, and Stem Cell Research. Bioengineering (Basel) 2023; 10:bioengineering10050521. [PMID: 37237591 DOI: 10.3390/bioengineering10050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Until now, very few efforts have been made to specifically trace, monitor, and visualize implantations, artificial organs, and bioengineered scaffolds for tissue engineering in vivo. While mainly X-Ray, CT, and MRI methods have been used for this purpose, the applications of more sensitive, quantitative, specific, radiotracer-based nuclear imaging techniques remain a challenge. As the need for biomaterials increases, so does the need for research tools to evaluate host responses. PET (positron emission tomography) and SPECT (single photon emission computer tomography) techniques are promising tools for the clinical translation of such regenerative medicine and tissue engineering efforts. These tracer-based methods offer unique and inevitable support, providing specific, quantitative, visual, non-invasive feedback on implanted biomaterials, devices, or transplanted cells. PET and SPECT can improve and accelerate these studies through biocompatibility, inertivity, and immune-response evaluations over long investigational periods at high sensitivities with low limits of detection. The wide range of radiopharmaceuticals, the newly developed specific bacteria, and the inflammation of specific or fibrosis-specific tracers as well as labeled individual nanomaterials can represent new, valuable tools for implant research. This review aims to summarize the opportunities of nuclear-imaging-supported implant research, including bone, fibrosis, bacteria, nanoparticle, and cell imaging, as well as the latest cutting-edge pretargeting methods.
Collapse
Affiliation(s)
- Andras Polyak
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Kondakov A, Berdalin A, Beregov M, Lelyuk V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. J Imaging 2022; 8:261. [PMID: 36286355 PMCID: PMC9605050 DOI: 10.3390/jimaging8100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a chronic widespread cardiovascular disease and a major predisposing factor for cardiovascular events, among which there are myocardial infarction and ischemic stroke. Atherosclerotic plaque formation is a process that involves different mechanisms, of which inflammation is the most common. Plenty of radiopharmaceuticals were developed to elucidate the process of plaque formation at different stages, some of which were highly specific for atherosclerotic plaque. This review summarizes the current nuclear medicine imaging landscape of preclinical and small-scale clinical studies of these specific RPs, which are not as widespread as labeled FDG, sodium fluoride, and choline. These include oxidation-specific epitope imaging, macrophage, and other cell receptors visualization, neoangiogenesis, and macrophage death imaging. It is shown that specific radiopharmaceuticals have strength in pathophysiologically sound imaging of the atherosclerotic plaques at different stages, but this also may induce problems with the signal registration for low-volume plaques in the vascular wall.
Collapse
Affiliation(s)
- Anton Kondakov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
- Radiology and Radiotherapy Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander Berdalin
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Mikhail Beregov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Vladimir Lelyuk
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| |
Collapse
|