1
|
Toumi O, Fadda C, Del Caro A, Conte P. Using Bran of Ancient and Old Grains for Wheat Bread Production. Foods 2025; 14:860. [PMID: 40077565 PMCID: PMC11898424 DOI: 10.3390/foods14050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
In the current era of heightened awareness regarding the impact of food choices, there has been a noticeable shift towards revisiting traditional ingredients. Following the growing interest in ancient grains, this study evaluated their potential use for enriching modern wheat dough and bread. The effects of substituting 20% of wheat flour with the bran of seven ancient grains on dough's rheological properties and bread quality were assessed. The bran-enriched doughs maintained high stability (ST) values and showed an enhanced elastic behavior compared to the control. Nonetheless, a reduction in dough extensibility (E) was also noted. In terms of bread measurements, all bran-enriched breads exhibited a lower specific volume and a darker crust and crumb compared to the control bread. However, not all of the bran breads showed a harder and chewier loaf texture. The composite breads also exhibited enhanced total dietary fiber (TDF) and polyphenol content. A sensory evaluation revealed that Garfagnana (GAR) and Norberto (NOR) bran-breads received the highest overall liking scores. In conclusion, the incorporation of ancient grain brans presents a promising approach to enhancing modern wheat doughs and breads, offering nutritional benefits without significantly compromising their sensory and textural properties.
Collapse
Affiliation(s)
| | - Costantino Fadda
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39/A, 07100 Sassari, Italy; (O.T.); (A.D.C.); (P.C.)
| | | | | |
Collapse
|
2
|
Mefleh M, Omri G, Limongelli R, Minervini F, Santamaria M, Faccia M. Enhancing nutritional and sensory properties of plant-based beverages: a study on chickpea and Kamut® flours fermentation using Lactococcus lactis. Front Nutr 2024; 11:1269154. [PMID: 38328482 PMCID: PMC10847596 DOI: 10.3389/fnut.2024.1269154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
The study aimed to set up a protocol for the production of a clean-label plant-based beverage (PBB), obtained by mixing chickpeas and Kamut® flours and using a commercial Lactococcus lactis (LL) as fermentation starter, and to characterize it, from nutritional, microbiological, textural, shelf-life, and sensory points of view. The effect of using the starter was evaluated comparing the LL-PBB with a spontaneously fermented beverage (CTRL-PBB). Both PBBs were high in proteins (3.89/100 g) and could be considered as sources of fiber (2.06/100 g). Notably, L. lactis fermentation enhanced the phosphorus (478 vs. 331 mg/kg) and calcium (165 vs. 117 mg/kg) concentrations while lowering the raffinose content (5.51 vs. 5.08 g/100 g) compared to spontaneous fermentation. Cell density of lactic acid bacteria increased by ca. two log cycle during fermentation of LL-PBB, whereas undesirable microbial groups were not detected. Furthermore, L. lactis significantly improved the beverage's viscosity (0.473 vs. 0.231 Pa s), at least for 10 days, and lightness. To assess market potential, we conducted a consumer test, presenting the LL-PBB in "plain" and "sweet" (chocolate paste-added) variants. The "sweet" LL-PBB demonstrated a higher acceptability score than its "plain" counterpart, with 88 and 78% of participants expressing acceptability and a strong purchase intent, respectively. This positive consumer response positions the sweet LL-PBB as a valuable, appealing alternative to traditional flavored yogurts, highlighting its potential in the growing plant-based food market.
Collapse
Affiliation(s)
| | | | | | - Fabio Minervini
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | |
Collapse
|
3
|
Mefleh M, Motzo R, Boukid F, Giunta F. Clipping Effect on the Grain Nitrogen and Protein Fractions of Ancient and Old Wheats Grown in a Mediterranean Environment. Foods 2023; 12:2582. [PMID: 37444319 DOI: 10.3390/foods12132582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
This study is the first to assess the effects of clipping, cultivar, season, and their interactions on the protein composition of six old and ancient wheat cultivars (n = 6). For this, nitrogen content, the proportion of wheat protein fractions, and the molecular weight distribution of the extractable and unextractable glutenin polymers were investigated as a function of cultivar and clipping in two consecutive seasons. The relationships between genotypic variation in grain nitrogen and protein fraction content under clipping and non-clipping conditions were also assessed. Clipping delayed and shortened the grain filling period of all of the cultivars. The protein composition of some cultivars behaved differently to clipping due to differences in the environmental conditions of S1 (exceptional dry season) and S2 (rainy season). In S1, clipping decreased the ratio of gliadins over glutenins (GLI/GLU) (<1) of Cappelli and Giovanni Paolo, while in S2, clipping improved the GLI/GLU of Giovanni Paolo, Monlis, and Norberto. The unextractable polymeric proteins were not affected by clipping. Khorasan was shown to be indifferent to clipping in S1 and S2. These results suggest that it is possible to have ancient/old wheats suitable for a dual-purpose system, in different climatic conditions, while maintaining good grain quality traits. The increased market demand for ancient and old wheats presents an economic opportunity for farmers who adopt the dual-purpose technique to cultivate these resilient crops again and increase their profit margins and revenues.
Collapse
Affiliation(s)
- Marina Mefleh
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Rosella Motzo
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | - Francesco Giunta
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| |
Collapse
|
4
|
Aoun M, Boukid F. Novel quality features to expand durum wheat applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4268-4274. [PMID: 36482810 DOI: 10.1002/jsfa.12374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 06/06/2023]
Abstract
Durum wheat represents a staple food in the human diet owing to its nutritional and technological features. In comparison to common wheat, durum wheat has higher tolerance to biotic and abiotic stresses. However, its production and culinary uses are limited compared to common wheat. Therefore, significant attention was attributed to upgrading the key quality of durum wheat (i.e., hardness, protein, starch and color). This review intends to put the spotlight on the modification of these properties to create new functionalities suiting a wider range of food applications based on critical compilation of scientific publications. Targeting specific genes has been shown to be a valuable strategy to design novel wheat varieties with higher nutritional value (e.g., high amylose), improved technological properties (e.g., higher glutenin content), attractive appearance (e.g., colored wheat) and new uses (e.g., soft durum wheat for breadmaking). Further efforts are still needed to find efficient ways to stabilize and maintain these properties. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meriem Aoun
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|
5
|
Golea CM, Stroe SG, Gâtlan AM, Codină GG. Physicochemical Characteristics and Microstructure of Ancient and Common Wheat Grains Cultivated in Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112138. [PMID: 37299117 DOI: 10.3390/plants12112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Different wheat species, common wheat (Triticum aestivum subsp. aestivum), spelt (Triticum aestivum subsp. spelta) and einkorn (Triticum monococcum subsp. monococcum), were analyzed for physicochemical (moisture, ash, protein, wet gluten, lipid, starch, carbohydrates, test weight and thousand-kernel mass) and mineral elements (Ca, Mg, K, Na, Zn, Fe, Mn and Cu) concentrations in grains. Additionally, wheat grain microstructure was determined using a scanning electron microscope. SEM micrographs of wheat grains show that einkorn has smaller type A starch granule diameters and more compact protein bonds compared to common wheat and spelt grains, making it easier to digest. The ancient wheat grains presented higher values for ash, protein, wet gluten and lipid content compared to the common wheat grains, whereas the carbohydrates and starch content were significantly (p < 0.05) lower. The mean values showed that spelt (Triticum aestivum subsp. spelta) grains presented the highest values for Ca, Mg and K, while einkorn (Triticum monococcum subsp. monococcum) grains had the highest values for the microelements Zn, Mn and Cu. The highest values of Fe were recorded for common wheat varieties whereas no significant differences among the species were obtained for Na content. The principal component analysis (p > 0.05) between wheat flours characteristics showed a close association between wheat grain species and between the chemical characteristics of gluten and protein content (r = 0.994), lipid and ash content (r = 0.952) and starch and carbohydrate content (r = 0.927), for which high positive significant correlations (p < 0.05) were obtained. Taking into account that Romania is the fourth largest wheat producer at the European level, this study is of great global importance. According to the results obtained, the ancient species have higher nutritional value from the point of view of chemical compounds and macro elements of minerals. This may be of great importance for consumers who demand bakery products with high nutritional quality.
Collapse
Affiliation(s)
- Camelia Maria Golea
- Faculty of Food Engineering, "Ştefan cel Mare" University, 720229 Suceava, Romania
- Vegetal Genetic Resources Bank "Mihai Cristea", 720224 Suceava, Romania
| | - Silviu-Gabriel Stroe
- Faculty of Food Engineering, "Ştefan cel Mare" University, 720229 Suceava, Romania
| | - Anca-Mihaela Gâtlan
- Faculty of Food Engineering, "Ştefan cel Mare" University, 720229 Suceava, Romania
| | | |
Collapse
|
6
|
Bianchi A, Venturi F, Zinnai A, Taglieri I, Najar B, Macaluso M, Merlani G, Angelini LG, Tavarini S, Clemente C, Sanmartin C. Valorization of an Old Variety of Triticum aestivum: A Study of Its Suitability for Breadmaking Focusing on Sensory and Nutritional Quality. Foods 2023; 12:foods12061351. [PMID: 36981275 PMCID: PMC10048056 DOI: 10.3390/foods12061351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
"Avanzi 3-Grano 23" (G23) is an old variety of Triticum aestivum from the mountain areas of Lunigiana (north Tuscany, Italy), where traditional farming communities have contributed to its success and on-farm conservation. G23 flour, traditionally used for typical food products, is characterized by particular nutritional and sensory traits but has technological properties which limit its suitability for breadmaking. The aim of this work was to evaluate how to promote the use of G23 through the optimization of bread formulation by leveraging both flour blending and the leavening system. During the preliminary test, three different mixes of G23 flour and a strong flour (C) were tested in terms of their leavening power as a function of leavening agent (baker's yeast or sourdough). The selected M2 flour, composed of G23:C (1:1 w/w), was used for further breadmaking trials and 100% C flour was utilized as a control. The sourdough bread obtained with the M2 flour (SB-M2) showed an improved sensory profile compared with the related control (SB-C). Furthermore, SB-M2 exhibited the best aromatic (high content in aldehydes, pyrazines and carboxylic acids) and phytochemical profile (total polyphenols and flavonoids content and antioxidant activity). In contrast, the use of baker's yeast, although optimal from the point of view of breadmaking, did not result in the same levels of aromatic complexity because it tends to standardize the product without valorizing the sensory and nutritional qualities of the flour. In conclusion, in the experimental conditions adopted, this old wheat variety appears to be suitable for the production of sourdough bakery products.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Basma Najar
- Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform of the Faculty of Pharmacy, Free University of Brussels, Bld Triomphe, Campus Plaine, 1050 Brussels, Belgium
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giorgio Merlani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Luciana Gabriella Angelini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Silvia Tavarini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Clarissa Clemente
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
7
|
Nutritional Quality of Gluten-Free Bakery Products Labeled Ketogenic and/or Low-Carb Sold in the Global Market. Foods 2022; 11:foods11244095. [PMID: 36553837 PMCID: PMC9778343 DOI: 10.3390/foods11244095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Gluten-free and ketogenic bakery products are gaining momentum. This study aims to develop a better understanding of the nutritional quality of gluten-free bakery products labeled ketogenic and/or low-carb. For this reason, the products available on the global market that were labeled ketogenic and/or low-carb (n = 757) were retrieved and compared to standard gluten-free products (n = 509). Overall, nutritionally, no significant differences were found among ketogenic and/or low-carb products due the high intra-variability of each type, but they differed from standard products. Compared to standard products, all ketogenic and/or low carb, irrespective of categories, showed lower carbohydrates that derived chiefly from fibers and, to a lesser extent, from sugars. They also had higher protein contents (p < 0.05) compared to standard products. Fats was higher (p < 0.05) in ketogenic and/or low-carb baking mixes, savory biscuits, and sweet biscuits than in their standard counterparts. Saturated fats were higher (p < 0.05) in low-carb savory biscuits and breads, as well as in ketogenic sweet biscuits than in the same standard products. Overall, median values of the nutrients align with the definition of the ketogenic diet. Nevertheless, several products did not align with any of the ketogenic definitions. Therefore, consumers need to carefully read the nutritional facts and not rely on mentions such as low-cab and ketogenic to make their decision of purchase/consumption.
Collapse
|