1
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
2
|
Gniesmer S, Sonntag SR, Gapeeva A, Cojocaru A, Kaps S, Adelung R, Sewing J, Tura A, Grisanti S, Grisanti S. In vivo evaluation of a nanotechnology-based microshunt for filtering glaucoma surgery. Sci Rep 2024; 14:4452. [PMID: 38396005 PMCID: PMC10891163 DOI: 10.1038/s41598-024-54960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
To carry out the preclinical and histological evaluation of a novel nanotechnology-based microshunt for drainage glaucoma surgery. Twelve New Zealand White rabbits were implanted with a novel microshunt and followed up for 6 weeks. The new material composite consists of the silicone polydimethylsiloxane (PDMS) and tetrapodal Zinc Oxide (ZnO-T) nano-/microparticles. The microshunts were inserted ab externo to connect the subconjunctival space with the anterior chamber. Animals were euthanized after 2 and 6 weeks for histological evaluation. Ocular health and implant position were assessed at postoperative days 1, 3, 7 and twice a week thereafter by slit lamp biomicroscopy. Intraocular pressure (IOP) was measured using rebound tonometry. A good tolerability was observed in both short- and medium-term follow-up. Intraocular pressure was reduced following surgery but increased to preoperative levels after 2 weeks. No clinical or histological signs of inflammatory or toxic reactions were seen; the fibrotic encapsulation was barely noticeable after two weeks and very mild after six weeks. The new material composite PDMS/ZnO-T is well tolerated and the associated foreign body fibrotic reaction quite mild. The new microshunt reduces the IOP for 2 weeks. Further research will elucidate a tube-like shape to improve and prolong outflow performance and longer follow-up to exclude medium-term adverse effects.
Collapse
Affiliation(s)
- Stefanie Gniesmer
- Department of Ophthalmology, University of Luebeck, Luebeck, Germany.
| | | | - Anna Gapeeva
- Institute for Materials Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ala Cojocaru
- Institute for Materials Science, Christian-Albrechts-University of Kiel, Kiel, Germany
- Phi-Stone AG, Kiel, Germany
| | - Sören Kaps
- Institute for Materials Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Judith Sewing
- Department of Ophthalmology, University of Luebeck, Luebeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Luebeck, Luebeck, Germany
| | | | - Swaantje Grisanti
- Department of Ophthalmology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
3
|
Gapeeva A, Qiu H, Cojocaru A, Arndt C, Riaz T, Schütt F, Selhuber-Unkel C, Mishra YK, Tura A, Sonntag S, Gniesmer S, Grisanti S, Kaps S, Adelung R. Tetrapodal ZnO-Based Composite Stents for Minimally Invasive Glaucoma Surgery. ACS Biomater Sci Eng 2023; 9:1352-1361. [PMID: 36776118 DOI: 10.1021/acsbiomaterials.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The glaucoma burden increases continuously and is estimated to affect more than 100 million people by 2040. As there is currently no cure to restore the optic nerve damage caused by glaucoma, the only controllable parameter is the intraocular pressure (IOP). In recent years, minimally invasive glaucoma surgery (MIGS) has emerged as an alternative to traditional treatments. It uses micro-sized drainage stents that are inserted through a small incision, minimizing the trauma to the tissue and reducing surgical and postoperative recovery time. However, a major challenge for MIGS devices is foreign body reaction and fibrosis, which can lead to a complete failure of the device. In this work, the antifibrotic potential of tetrapodal ZnO (t-ZnO) microparticles used as an additive is elucidated by using rat embryonic fibroblasts as a model. A simple, direct solvent-free process for the fabrication of stents with an outer diameter of 200-400 μm is presented, in which a high amount of t-ZnO particles (45-75 wt %) is mixed into polydimethylsiloxane (PDMS) and a highly viscous polymer/particle mixture is extruded. The fabricated stents possess increased elastic modulus compared to pure PDMS while remaining flexible to adapt to the curvature of an eye. In vitro experiments showed that the fibroblast cell viability was inhibited to 43 ± 3% when stents with 75 wt % t-ZnO were used. The results indicate that cell inhibiting properties can be attributed to an increased amount of protruding t-ZnO particles on the stent surface, leading to an increase in local contacts with cells and a disruption of the cell membrane. As a secondary mechanism, the released Zn ions could also contribute to the cell-inhibiting properties in the close vicinity of the stent surface. Overall, the fabrication method and the antifibrotic and mechanical properties of developed stents make them promising for application in MIGS.
Collapse
Affiliation(s)
- Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Haoyi Qiu
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Ala Cojocaru
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Arndt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Tehseen Riaz
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, DK-6400 Sønderborg, Denmark
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Svenja Sonntag
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sören Kaps
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
4
|
Sonntag SR, Gniesmer S, Gapeeva A, Offermann KJ, Adelung R, Mishra YK, Cojocaru A, Kaps S, Grisanti S, Grisanti S, Tura A. In Vitro Evaluation of Zinc Oxide Tetrapods as a New Material Component for Glaucoma Implants. Life (Basel) 2022; 12:1805. [PMID: 36362958 PMCID: PMC9697987 DOI: 10.3390/life12111805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 09/09/2024] Open
Abstract
In our previous study we were able to show that zinc oxide (ZnO) tetrapods inhibit wound healing processes. Therefore, the aim of this study was to test the antiproliferative effect of two types of porous polydimethylsiloxane (PDMS)/ tetrapodal zinc oxide (ZnO-T) materials, as well as their usability for glaucoma implants. To find the best implant material, two different porous PDMS/ZnO-T materials were examined. One consisted of 3D interconnected PDMS coarse-pored foams with protruding ZnO-T particles; the other consisted of fine-pored 3D interconnected ZnO-T networks homogeneously coated by a thin PDMS film in the nanometer range. Fibroblast cell viability was investigated for both materials via MTT dye, and some implant material samples were further processed for electron microscopy. Both PDMS/ZnO-T materials showed reduced cell viability in the MTT staining. Furthermore, the electron microscopy revealed barely any fibroblasts growing on the implant materials. At the surface of the fine-pored implant material, however, fibroblasts could not be observed in the etched control samples without ZnO-T. It was found that post-processing of the material to the final stent diameter was highly challenging and that the fabrication method, therefore, had to be adapted. In conclusion, we were able to demonstrate the antiproliferative potential of the two different PDMS/ZnO-T materials. Furthermore, smaller pore size (in the range of tens of micrometers) in the implant material seems to be preferable.
Collapse
Affiliation(s)
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Anna Gapeeva
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Klaus Jakob Offermann
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Ala Cojocaru
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
- Phi-Stone AG, 24143 Kiel, Germany
| | - Sören Kaps
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Swaantje Grisanti
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| |
Collapse
|