1
|
Cheng H, Miller D, Southwell N, Porcari P, Fischer JL, Taylor I, Salbaum JM, Kappen C, Hu F, Yang C, Keshari KR, Gross SS, D'Aurelio M, Chen Q. Untargeted pixel-by-pixel metabolite ratio imaging as a novel tool for biomedical discovery in mass spectrometry imaging. eLife 2025; 13:RP96892. [PMID: 40100251 PMCID: PMC11919253 DOI: 10.7554/elife.96892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.
Collapse
Affiliation(s)
- Huiyong Cheng
- Department of Pharmacology, Weill Cornell Medicine, New York, United States
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, United States
| | - Nneka Southwell
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, United States
| | - Paola Porcari
- Memorial Sloan Kettering Cancer Center, New York, United States
| | | | - Isobel Taylor
- Department of Pharmacology, Weill Cornell Medicine, New York, United States
| | - J Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, United States
| | - Claudia Kappen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, United States
| | - Fenghua Hu
- Cornell University, Department of Molecular Biology & Genetics, Ithaca, United States
| | - Cha Yang
- Cornell University, Department of Molecular Biology & Genetics, Ithaca, United States
| | | | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, United States
| | - Marilena D'Aurelio
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, United States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, United States
| |
Collapse
|
2
|
Cheng H, Miller D, Southwell N, Porcari P, Fischer JL, Taylor I, Michael Salbaum J, Kappen C, Hu F, Yang C, Keshari KR, Gross SS, D'Aurelio M, Chen Q. Untargeted Pixel-by-Pixel Imaging of Metabolite Ratio Pairs as a Novel Tool for Biomedical Discovery in Mass Spectrometry Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575105. [PMID: 38370710 PMCID: PMC10871215 DOI: 10.1101/2024.01.10.575105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.
Collapse
|
3
|
Gitta S, Szabó É, Sulc A, Czétány P, Máté G, Balló A, Csabai T, Szántó Á, Márk L. Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos. Int J Mol Sci 2024; 25:7423. [PMID: 39000535 PMCID: PMC11242196 DOI: 10.3390/ijms25137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The receptive phase of the uterus is marked by structural and functional maturation of the endometrium. During this limited time span, the blastocyst competency is superimposed on the receptive endometrium. It is a well-known fact that lipid signalling in early-stage pregnancy has a crucial role in successful embryogenesis. In our study, CD-1 mouse uteri after normal and in vitro fertilization (IVF) were investigated at 6.5, 8.5, and 10.5 days of pregnancy. Matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry and liquid chromatography coupled tandem mass spectrometry were used for identification of phosphatidylcholine (PC) lipid structures. In the embryonal tissues, PC 32:0 and PC 34:0 were increased, while in the antemesometrial (AM) decidua the two 20:4-containing PCs, PC 36:4 and PC 38:4 were increased. In transferred uterus samples, higher expressions of PC 34:0, PC 34:1, PC 34:2, PC 36:1, and PC 36:2 in mesometrial decidua were seen, whereas the two 20:4-containing PCs, PC 36:4 and PC 38:4 showed increased expression in the AM and lateral decidua. This paper shows a significant spatio-temporal change in lipid metabolism during IVF procedures for the first time.
Collapse
Affiliation(s)
- Stefánia Gitta
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
| | - Éva Szabó
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
| | - Alexandra Sulc
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
| | - Péter Czétány
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, Clinical Center, University of Pécs, 7621 Pécs, Hungary
| | - Gábor Máté
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - András Balló
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, Clinical Center, University of Pécs, 7621 Pécs, Hungary
| | - Tímea Csabai
- Institute of Biology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, Clinical Center, University of Pécs, 7621 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Imaging Centre for Life and Material Sciences, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE, Human Reproduction Research Group, 7624 Pécs, Hungary
| |
Collapse
|
4
|
Shibata K, Hayasaka T, Sakamoto S, Hashimoto S, Kawamura N, Fujiyoshi M, Kimura T, Shimamura T, Fukai M, Taketomi A. Warm Ischemia Induces Spatiotemporal Changes in Lysophosphatidylinositol That Affect Post-Reperfusion Injury in Normal and Steatotic Rat Livers. J Clin Med 2023; 12:jcm12093163. [PMID: 37176603 PMCID: PMC10179083 DOI: 10.3390/jcm12093163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Warm ischemia-reperfusion injury is a prognostic factor for hepatectomy and liver transplantation. However, its underlying molecular mechanisms are unknown. This study aimed to elucidate these mechanisms and identify the predictive markers of post-reperfusion injury. Rats with normal livers were subjected to 70% hepatic warm ischemia for 15, 30, or 90 min, while those with steatotic livers were subjected to 70% hepatic warm ischemia for only 30 min. The liver and blood were sampled at the end of ischemia and 1, 6, and 24 h after reperfusion. The serum alanine aminotransferase (ALT) activity, Suzuki injury scores, and lipid peroxidation (LPO) products were evaluated. The ALT activity and Suzuki scores increased with ischemic duration and peaked at 1 and 6 h after reperfusion, respectively. Steatotic livers subjected to 30 min ischemia and normal livers subjected to 90 min ischemia showed comparable injury. A similar trend was observed for LPO products. Imaging mass spectrometry of normal livers revealed an increase in lysophosphatidylinositol (LPI (18:0)) and a concomitant decrease in phosphatidylinositol (PI (18:0/20:4)) in Zone 1 (central venous region) with increasing ischemic duration; they returned to their basal values after reperfusion. Similar changes were observed in steatotic livers. Hepatic warm ischemia time-dependent acceleration of PI (18:0/20:4) to LPI (18:0) conversion occurs initially in Zone 1 and is more pronounced in fatty livers. Thus, the LPI (18:0)/PI (18:0/20:4) ratio is a potential predictor of post-reperfusion injury.
Collapse
Affiliation(s)
- Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Sodai Sakamoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Satsuki Hashimoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masato Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taichi Kimura
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|