1
|
Kapazoglou A, Tani E, Papasotiropoulos V, Letsiou S, Gerakari M, Abraham E, Bebeli PJ. Enhancing Abiotic Stress Resilience in Mediterranean Woody Perennial Fruit Crops: Genetic, Epigenetic, and Microbial Molecular Perspectives in the Face of Climate Change. Int J Mol Sci 2025; 26:3160. [PMID: 40243927 PMCID: PMC11988844 DOI: 10.3390/ijms26073160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Enhanced abiotic stresses such as increased drought, elevated temperatures, salinity, and extreme weather phenomena severely affect major crops in the Mediterranean area, a 'hot spot' of climate change. Plants have evolved mechanisms to face stressful conditions and adapt to increased environmental pressures. Intricate molecular processes involving genetic and epigenetic factors and plant-microbe interactions have been implicated in the response and tolerance to abiotic stress. Deciphering the molecular mechanisms whereby plants perceive and respond to stress is crucial for developing strategies to counteract climate challenges. Progress in determining genes, complex gene networks, and biochemical pathways, as well as plant-microbiota crosstalk, involved in abiotic stress tolerance has been achieved through the application of molecular tools in diverse genetic resources. This knowledge could be particularly useful for accelerating plant improvement and generating resilient varieties, especially concerning woody perennial crops, where classical breeding is a lengthy and labor-intensive process. Similarly, understanding the mechanisms of plant-microbe interactions could provide insights into innovative approaches to facing stressful conditions. In this review, we provide a comprehensive overview and discuss the recent findings concerning the genetic, epigenetic, and microbial aspects shaping abiotic stress responses, in the context of enhancing resilience in important Mediterranean woody perennial fruit crops.
Collapse
Affiliation(s)
- Aliki Kapazoglou
- Department of Grapevine, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Lykovrysi, 14123 Athens, Greece
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| | - Vasileios Papasotiropoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Egaleo, 12243 Athens, Greece;
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| | - Eleni Abraham
- School of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124 Thessaloniki, Greece;
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (V.P.); (M.G.); (P.J.B.)
| |
Collapse
|
2
|
Lazaridi E, Kapazoglou A, Gerakari M, Kleftogianni K, Passa K, Sarri E, Papasotiropoulos V, Tani E, Bebeli PJ. Crop Landraces and Indigenous Varieties: A Valuable Source of Genes for Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:758. [PMID: 38592762 PMCID: PMC10975389 DOI: 10.3390/plants13060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Landraces and indigenous varieties comprise valuable sources of crop species diversity. Their utilization in plant breeding may lead to increased yield and enhanced quality traits, as well as resilience to various abiotic and biotic stresses. Recently, new approaches based on the rapid advancement of genomic technologies such as deciphering of pangenomes, multi-omics tools, marker-assisted selection (MAS), genome-wide association studies (GWAS), and CRISPR/Cas9 gene editing greatly facilitated the exploitation of landraces in modern plant breeding. In this paper, we present a comprehensive overview of the implementation of new genomic technologies and highlight their importance in pinpointing the genetic basis of desirable traits in landraces and indigenous varieties of annual, perennial herbaceous, and woody crop species cultivated in the Mediterranean region. The need for further employment of advanced -omic technologies to unravel the full potential of landraces and indigenous varieties underutilized genetic diversity is also indicated. Ultimately, the large amount of genomic data emerging from the investigation of landraces and indigenous varieties reveals their potential as a source of valuable genes and traits for breeding. The role of landraces and indigenous varieties in mitigating the ongoing risks posed by climate change in agriculture and food security is also highlighted.
Collapse
Affiliation(s)
- Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Kondylia Passa
- Department of Agriculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece;
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Vasileios Papasotiropoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| |
Collapse
|
3
|
Maniatis G, Tani E, Katsileros A, Avramidou EV, Pitsoli T, Sarri E, Gerakari M, Goufa M, Panagoulakou M, Xipolitaki K, Klouvatos K, Megariti S, Pappi P, Papadakis IE, Bebeli PJ, Kapazoglou A. Genetic and Epigenetic Responses of Autochthonous Grapevine Cultivars from the 'Epirus' Region of Greece upon Consecutive Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:27. [PMID: 38202337 PMCID: PMC10780352 DOI: 10.3390/plants13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Within the framework of preserving and valorizing the rich grapevine germplasm of the Epirus region of Greece, indigenous grapevine (Vitis vinifera L.) cultivars were characterized and assessed for their resilience to abiotic stresses in the context of climate change. The cultivars 'Debina' and 'Dichali' displayed significant differences in their response to drought stress as judged by morpho-physiological analysis, indicating higher drought tolerance for Dichali. Hence, they were selected for further study aiming to identify genetic and epigenetic mechanisms possibly regulating drought adaptability. Specifically, self-rooted and heterografted on 'Richter 110' rootstock plants were subjected to two phases of drought with a recovery period in between. Gene expression analysis was performed for two stress-related miRNAs and their target genes: (a) miRNA159 and putative targets, VvMYB101, VvGATA-26-like, VvTOPLESS-4-like and (b) miRNA156 and putative target gene VvCONSTANS-5. Overall, grafted plants exhibited a higher drought tolerance than self-rooted plants, suggesting beneficial rootstock-scion interactions. Comparative analysis revealed differential gene expression under repetitive drought stresses between the two cultivars as well as between the self-rooted and grafted plants. 'Dichali' exhibited an up-regulation of most of the genes examined, which may be associated with increased tolerance. Nevertheless, the profound down-regulation of VvTOPLESS-4-like (a transcriptional co-repressor of transcription factors) upon drought and the concomitant up-regulation of miRNA159 highlights the importance of this 'miRNA-target' module in drought responsiveness. DNA methylation profiling using MSAP analysis revealed differential methylation patterns between the two genotypes in response to drought. Further investigations of gene expression and DNA methylation will contribute to our understanding of the epigenetic mechanisms underlying grapevine tolerance to drought stress.
Collapse
Affiliation(s)
- Grigorios Maniatis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Anastasios Katsileros
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Ilisia, 11528 Athens, Greece;
| | - Theodora Pitsoli
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece;
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Goufa
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Panagoulakou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Konstantina Xipolitaki
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Kimon Klouvatos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Stamatia Megariti
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Polixeni Pappi
- Laboratory of Plant Virology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Kastorias 32A, Mesa Katsampas, 71307 Heraklion, Crete, Greece;
| | - Ioannis E. Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece;
| |
Collapse
|