1
|
Chopra H, Daley MP, Kumar A, Sugai J, Dahlkemper A, Kaigler D, Sherley JL. Evaluation of the Precision of Kinetic Stem Cell (KSC) Counting for Specific Quantification of Human Mesenchymal Stem Cells in Heterogeneous Tissue Cell Preparations. Life (Basel) 2023; 14:51. [PMID: 38255666 PMCID: PMC10820168 DOI: 10.3390/life14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Kinetic stem cell (KSC) counting is a recently introduced first technology for quantifying tissue stem cells in vertebrate organ and tissue cell preparations. Previously, effective quantification of the fraction or dosage of tissue stem cells had been largely lacking in stem cell science and medicine. A general method for the quantification of tissue stem cells will accelerate progress in both of these disciplines as well as related industries like drug development. Triplicate samples of human oral alveolar bone cell preparations, which contain mesenchymal stem cells (MSCs), were used to estimate the precision of KSC counting analyses conducted at three independent sites. A high degree of intra-site precision was found, with coefficients of variation for determinations of MSC-specific fractions of 8.9% (p < 0.003), 13% (p < 0.006), and 25% (p < 0.02). The estimates of inter-site precision, 11% (p < 0.0001) and 26% (p < 0.0001), also indicated a high level of precision. Results are also presented to show the ability of KSC counting to define cell subtype-specific kinetics factors responsible for changes in the stem cell fraction during cell culture. The presented findings support the continued development of KSC counting as a new tool for advancing stem cell science and medicine.
Collapse
Affiliation(s)
- Hitesh Chopra
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
| | - Michael P. Daley
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | | | - James Sugai
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
| | - Alex Dahlkemper
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
2
|
Chopra H, Cao C, Sommer C, Dahlkemper A, Sugai J, Sherley JL, Kaigler D. Quantification of the Culture Stability of Stem Cell Fractions from Oral-Derived, Human Mesenchymal Stem Cell Preparations: A Significant Step toward the Clinical Translation of Cell Therapies. Cells 2023; 12:2703. [PMID: 38067131 PMCID: PMC10705797 DOI: 10.3390/cells12232703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
A continuing limitation and major challenge in the development and utilization of predictable stem cell therapies (SCTs) is the determination of the optimal dosages of stem cells. Herein, we report the quantification of stem cell fractions (SCF) of human mesenchymal stem cell (MSC) preparations derived from oral tissues. A novel computational methodology, kinetic stem cell (KSC) counting, was used to quantify the SCF and specific cell culture kinetics of stem cells in oral alveolar bone-derived MSC (aBMSCs) from eight patients. These analyses established, for the first time, that the SCF within these heterogeneous, mixed-cell populations differs significantly among donors, ranging from 7% to 77% (ANOVA p < 0.0001). Both the initial SCF of aBMSC preparations and changes in the level of the SCF with serial culture over time showed a high degree of inter-donor variation. Hence, it was revealed that the stability of the SCF of human aBMSC preparations during serial cell culture shows inter-donor variation, with some patient preparations exhibiting sufficient stability to support the long-term net expansion of stem cells. These findings provide important insights for the clinical-scale expansion and biomanufacturing of MSCs, which can facilitate establishing more effective and predictable outcomes in clinical trials and treatments employing SCT.
Collapse
Affiliation(s)
- Hitesh Chopra
- Kaigler Lab of Stem Cell Science and Tissue Regeneration, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (C.C.); (C.S.); (A.D.); (J.S.)
| | - Chen Cao
- Kaigler Lab of Stem Cell Science and Tissue Regeneration, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (C.C.); (C.S.); (A.D.); (J.S.)
| | - Celia Sommer
- Kaigler Lab of Stem Cell Science and Tissue Regeneration, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (C.C.); (C.S.); (A.D.); (J.S.)
| | - Alex Dahlkemper
- Kaigler Lab of Stem Cell Science and Tissue Regeneration, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (C.C.); (C.S.); (A.D.); (J.S.)
| | - James Sugai
- Kaigler Lab of Stem Cell Science and Tissue Regeneration, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (C.C.); (C.S.); (A.D.); (J.S.)
| | | | - Darnell Kaigler
- Kaigler Lab of Stem Cell Science and Tissue Regeneration, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (C.C.); (C.S.); (A.D.); (J.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|