1
|
Singh AV, Chandrasekar V, Prabhu VM, Bhadra J, Laux P, Bhardwaj P, Al-Ansari AA, Aboumarzouk OM, Luch A, Dakua SP. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. Biomed Mater 2024; 19:060501. [PMID: 39389102 DOI: 10.1088/1748-605x/ad85bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The pursuit of sustainable bioinspired materials for regenerative medicine demands a nuanced balance between scientific advancement, ethical considerations, and environmental consciousness. This abstract encapsulates a comprehensive perspective paper exploring the intricate dynamics of toxicology, environmental impact, and ethical concerns within the realm of bioinspired materials. As the landscape of regenerative medicine evolves, ensuring the biocompatibility and safety of these materials emerges as a pivotal challenge. Our paper delves into the multidimensional aspects of toxicity assessment, encompassing cytotoxicity, genotoxicity, and immunotoxicity analyses. Additionally, we shed light on the complexities of evaluating the environmental impact of bioinspired materials, discussing methodologies such as life cycle assessment, biodegradability testing, and sustainable design approaches. Amid these scientific endeavors, we emphasize the paramount importance of ethical considerations in bioinspired material development, navigating the intricate web of international regulations and ethical frameworks guiding medical materials. Furthermore, our abstract underscores the envisioned future directions and challenges in toxicology techniques, computational modeling, and holistic evaluation, aiming for a comprehensive understanding of the synergistic interplay between sustainable bioinspired materials, toxicity assessment, environmental stewardship, and ethical deliberation.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Varsha M Prabhu
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Jolly Bhadra
- Qatar University Young Research centre (QUYRC) Qatar University 2053, Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | | | - Omar M Aboumarzouk
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Clinical Advancement Department, Hamad Medicial Corporation, Doha 3050, Qatar
| |
Collapse
|
2
|
Seraji AA, Nahavandi R, Kia A, Rabbani Doost A, Keshavarz V, Sharifianjazi F, Tavamaishvili K, Makarem D. Finite element analysis and in vitro tests on endurance life and durability of composite bone substitutes. Front Bioeng Biotechnol 2024; 12:1417440. [PMID: 39301173 PMCID: PMC11410606 DOI: 10.3389/fbioe.2024.1417440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Bone structures facilitate the regeneration and repair of bone tissue in regions where it has been damaged or destroyed, either temporarily or permanently. Therefore, the bone's fatigue strength and durability are crucial to its efficacy and longevity. Several variables, such as the construct's material qualities, design, and production procedure, loading and unloading cycles, and physiological conditions influence the endurance life of bone constructs. Metals, ceramics, and polymers are all routinely utilized to create bone substitutes, and each of these materials has unique features that might affect the fatigue strength and endurance life of the final product. The mechanical performance and capacity to promote bone tissue regeneration may be affected by the scaffold's design, porosity, and pore size. Researchers employ mechanical testing under cyclic loading circumstances as one example of an experimental approach used to assess bone construction endurance. These analyses can give us important information about the stress-strain behavior, resistance to multiple loading cycles, and fatigue strength of the new structure. Predicting the endurance life of the developed construct may also be possible with the use of simulations and numerical analyses. Hence, in order to create reliable and efficient constructs for bone tissue engineering, it is crucial to understand their fatigue strength and durability. The purpose of this study is to analyze the effective parameters for fatigue strength of bone structures and to gather the models and evaluations utilized in endurance life assessments.
Collapse
Affiliation(s)
- Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Reza Nahavandi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Kia
- Department of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Ahad Rabbani Doost
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Vahid Keshavarz
- Department of Materials Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | | | - Dorna Makarem
- Escuela Tecnica Superior de Ingenieros de Telecomunicacion Politecnica de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Sedira N, Pinto J, Bentes I, Pereira S. Bibliometric analysis of global research trends on biomimetics, biomimicry, bionics, and bio-inspired concepts in civil engineering using the Scopus database. BIOINSPIRATION & BIOMIMETICS 2024; 19:041001. [PMID: 38631363 DOI: 10.1088/1748-3190/ad3ff6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
This paper presents a bibliometrics analysis aimed at discerning global trends in research on 'biomimetics', 'biomimicry', 'bionics', and 'bio-inspired' concepts within civil engineering, using the Scopus database. This database facilitates the assessment of interrelationships and impacts of these concepts within the civil engineering domain. The findings demonstrate a consistent growth in publications related to these areas, indicative of increasing interest and impact within the civil engineering community. Influential authors and institutions have emerged, making significant contributions to the field. The United States, Germany, and the United Kingdom are recognised as leaders in research on these concepts in civil engineering. Notably, emerging countries such as China and India have also made considerable contributions. The integration of design principles inspired by nature into civil engineering holds the potential to drive sustainable and innovative solutions for various engineering challenges. The conducted bibliometrics analysis grants perspective on the current state of scientific research on biomimetics, biomimicry, bionics, and bio-inspired concepts in the civil engineering domain, offering data to predict the evolution of each concept in the coming years. Based on the findings of this research, 'biomimetics' replicates biological substances, 'biomimicry' directly imitates designs, and 'bionics' mimics biological functions, while 'bio-inspired' concepts offer innovative ideas beyond direct imitation. Each term incorporates distinct strategies, applications, and historical contexts, shaping innovation across the field of civil engineering.
Collapse
Affiliation(s)
- Naim Sedira
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| | - Jorge Pinto
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| | - Isabel Bentes
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| | - Sandra Pereira
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| |
Collapse
|
4
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Alshangiti DM, El-Damhougy TK, Zaher A, Madani M, Mohamady Ghobashy M. Revolutionizing biomedicine: advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: a review. RSC Adv 2023; 13:35251-35291. [PMID: 38053691 PMCID: PMC10694639 DOI: 10.1039/d3ra07391b] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nanocomposite hydrogel biomaterials represent an exciting Frontier in biomedicine, offering solutions to longstanding challenges. These hydrogels are derived from various biopolymers, including fibrin, silk fibroin, collagen, keratin, gelatin, chitosan, hyaluronic acid, alginate, carrageenan, and cellulose. While these biopolymers possess inherent biocompatibility and renewability, they often suffer from poor mechanical properties and rapid degradation. Researchers have integrated biopolymers such as cellulose, starch, and chitosan into hydrogel matrices to overcome these limitations, resulting in nanocomposite hydrogels. These innovative materials exhibit enhanced mechanical strength, improved biocompatibility, and the ability to finely tune drug release profiles. The marriage of nanotechnology and hydrogel chemistry empowers precise control over these materials' physical and chemical properties, making them ideal for tissue engineering, drug delivery, wound healing, and biosensing applications. Recent advancements in the design, fabrication, and characterization of biopolymer-based nanocomposite hydrogels have showcased their potential to transform biomedicine. Researchers are employing strategic approaches for integrating biopolymer nanoparticles, exploring how nanoparticle properties impact hydrogel performance, and utilizing various characterization techniques to evaluate structure and functionality. Moreover, the diverse biomedical applications of these nanocomposite hydrogels hold promise for improving patient outcomes and addressing unmet clinical needs.
Collapse
Affiliation(s)
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box: 11754, Yousef Abbas Str. Nasr City Cairo Egypt
| | - Ahmed Zaher
- Chemistry Department, Faculty of Science, El-Mansoura University Egypt
| | - Mohamed Madani
- College of Science and Humanities, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29 Nasr City Cairo Egypt
| |
Collapse
|
6
|
Păun AG, Dumitriu C, Ungureanu C, Popescu S. Silk Fibroin/ZnO Coated TiO 2 Nanotubes for Improved Antimicrobial Effect of Ti Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5855. [PMID: 37687548 PMCID: PMC10488414 DOI: 10.3390/ma16175855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
The aim of the present research is to develop a novel hybrid coating for a Ti dental implant that combines nature-inspired biomimetic polymers and TiO2 nanostructures with an entrapped ZnO antimicrobial agent. ZnO was used in other studies to cover the surface of Ti or Ti-Zr to reduce the need of clinical antibiotics, prevent the onset of peri-implantitis, and increase the success rate of oral clinical implantation. We developed an original coating that represents a promising approach in clinical dentistry. The titanium surface was first anodized to obtain TiO2 nanotubes (NT). Subsequently, on the NT surface, silk fibroin isolated from Bombyx mori cocoons was deposited as nanofibers using the electrospun technique. For an improved antibacterial effect, ZnO nanoparticles were incorporated in this biopolymer using three different methods. The surface properties of the newly created coatings were assessed to establish how they are influenced by the most important features: morphology, wettability, topography. The evaluation of stability by electrochemical methods in simulated physiological solutions was discussed more in detail, considering that it could bring necessary information related to the behavior of the implant material. All samples had improved roughness and hydrophilicity, as well as corrosion stability (with protection efficiency over 80%). The antibacterial test shows that the functional hybrid coating has good antibacterial activity because it can inhibit the proliferation of Staphylococcus aureus up to 53% and Enterococcus faecalis up to 55%. All Ti samples with the modified surface have proven superior properties compared with unmodified TiNT, which proved that they have the potential to be used as implant material in dentistry.
Collapse
Affiliation(s)
| | | | | | - Simona Popescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 Street, 011061 Bucharest, Romania; (A.G.P.); (C.D.); (C.U.)
| |
Collapse
|