1
|
La Gatta S, Pecoraro VL. Recent advances in de novo designed metallopeptides as tailored enzyme mimics. Curr Opin Chem Biol 2025; 86:102586. [PMID: 40117715 DOI: 10.1016/j.cbpa.2025.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025]
Abstract
Advances in de novo design of metallopeptides have paved the way for customized metalloenzyme mimics with impressive catalytic capabilities. Over the last few years, incorporation of transition metals into simplified peptide scaffolds has allowed for catalytic efficiencies similar to or greater than those found in natural metalloenzymes. Artificial de novo peptide scaffolds highlight how precise modifications to metal coordination environments can improve scaffold stability and catalytic efficiency for a wide range of applications towards redox, non redox, synthetic, and energy conversion chemistry. These insights deepen our understanding of enzyme evolution and set a solid foundation for new directions in biocatalysis.
Collapse
Affiliation(s)
- Salvatore La Gatta
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Mahato C, Pal S, Kuiry H, Das D. Pathway-Dependent Catalytic Activity of Short-Peptide-Based Metallozyme: From Promiscuous Activity to Cascade Reaction. NANO LETTERS 2025; 25:2538-2546. [PMID: 39893659 DOI: 10.1021/acs.nanolett.4c06230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Many natural enzymes contain metal ions as cofactors in the active site for biological activity. However, the pathway of the introduction of metal ions in the earliest protein folds for the emergence of higher catalytic activity remains an intriguing open question. Herein, we demonstrate that pathway-dependent self-assembly of short-peptide-based metallozymes results in differences in catalytic activity. Short-peptide-based amyloids with solvent exposed arrays of colocalized catalytic units are able to bind highly soluble Cu2+ ions to demonstrate oxidase-like and RNase-like activity (promiscuity). Further, the metallozyme was able to exhibit higher hydrolase-oxidase cascade activity compared to the mixture of natural enzymes, esterase, and laccase. The collaboration between short-peptide-based amyloid microphases and metal ions suggests that metallozymes might have played a pivotal role in early metabolic processes and biopolymer evolution on the prebiotic earth.
Collapse
Affiliation(s)
- Chiranjit Mahato
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Sumit Pal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Himangshu Kuiry
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Hlouchová K. Peptides En Route from Prebiotic to Biotic Catalysis. Acc Chem Res 2024; 57:2027-2037. [PMID: 39016062 PMCID: PMC11308367 DOI: 10.1021/acs.accounts.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
In the quest to understand prebiotic catalysis, different molecular entities, mainly minerals, metal ions, organic cofactors, and ribozymes, have been implied as key players. Of these, inorganic and organic cofactors have gained attention for their ability to catalyze a wide array of reactions central to modern metabolism and frequently participate in these reactions within modern enzymes. Nevertheless, bridging the gap between prebiotic and modern metabolism remains a fundamental question in the origins of life. In this Account, peptides are investigated as a potential bridge linking prebiotic catalysis by minerals/cofactors to enzymes that dominate modern life's chemical reactions. Before ribosomal synthesis emerged, peptides of random sequences were plausible on early Earth. This was made possible by different sources of amino acid delivery and synthesis, as well as their condensation under a variety of conditions. Early peptides and proteins probably exhibited distinct compositions, enriched in small aliphatic and acidic residues. An increase in abundance of amino acids with larger side chains and canonical basic groups was most likely dependent on the emergence of their more challenging (bio)synthesis. Pressing questions thus arise: how did this composition influence the early peptide properties, and to what extent could they contribute to early metabolism? Recent research from our group and colleagues shows that highly acidic peptides/proteins comprising only the presumably "early" amino acids are in fact competent at secondary structure formation and even possess adaptive folding characteristics such as spontaneous refoldability and chaperone independence to achieve soluble structures. Moreover, we showed that highly acidic proteins of presumably "early" composition can still bind RNA by utilizing metal ions as cofactors to bridge carboxylate and phosphoester functional groups. And finally, ancient organic cofactors were shown to be capable of binding to sequences from amino acids considered prebiotically plausible, supporting their folding properties and providing functional groups, which would nominate them as catalytic hubs of great prebiotic relevance. These findings underscore the biochemical plausibility of an early peptide/protein world devoid of more complex amino acids yet collaborating with other catalytic species. Drawing from the mechanistic properties of protein-cofactor catalysis, it is speculated here that the early peptide/protein-cofactor ensemble could facilitate a similar range of chemical reactions, albeit with lower catalytic rates. This hypothesis invites a systematic experimental test. Nonetheless, this Account does not exclude other scenarios of prebiotic-to-biotic catalysis or prioritize any specific pathways of prebiotic syntheses. The objective is to examine peptide availability, composition, and functional potential among the various factors involved in the emergence of early life.
Collapse
Affiliation(s)
- Klára Hlouchová
- Department
of Cell Biology, Faculty of Science, Charles
University, Prague 12800, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 16610, Czech Republic
| |
Collapse
|
5
|
Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K. Modern and prebiotic amino acids support distinct structural profiles in proteins. Open Biol 2022; 12:220040. [PMID: 35728622 PMCID: PMC9213115 DOI: 10.1098/rsob.220040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.
Collapse
Affiliation(s)
- Vyacheslav Tretyachenko
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic,Department of Biochemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Jiří Vymětal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| | - Tereza Neuwirthová
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 1528550, Japan,Graduate School of Media and Governance, Keio University, Fujisawa 2520882 Japan
| | - Klára Hlouchová
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| |
Collapse
|
6
|
Mancini JA, Pike DH, Tyryshkin AM, Haramaty L, Wang MS, Poudel S, Hecht M, Nanda V. Design of a Fe 4 S 4 cluster into the core of a de novo four-helix bundle. Biotechnol Appl Biochem 2020; 67:574-585. [PMID: 32770861 DOI: 10.1002/bab.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.
Collapse
Affiliation(s)
- Joshua A Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Michael Hecht
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
8
|
A Strategy for Combinatorial Cavity Design in De Novo Proteins. Life (Basel) 2020; 10:life10020009. [PMID: 31979320 PMCID: PMC7175167 DOI: 10.3390/life10020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Protein sequence space is vast; nature uses only an infinitesimal fraction of possible sequences to sustain life. Are there solutions to biological problems other than those provided by nature? Can we create artificial proteins that sustain life? To investigate these questions, we have created combinatorial collections, or libraries, of novel sequences with no homology to those found in living organisms. Previously designed libraries contained numerous functional proteins. However, they often formed dynamic, rather than well-ordered structures, which complicated structural and mechanistic characterization. To address this challenge, we describe the development of new libraries based on the de novo protein S-824, a 4-helix bundle with a very stable 3-dimensional structure. Distinct from previous libraries, we targeted variability to a specific region of the protein, seeking to create potential functional sites. By characterizing variant proteins from this library, we demonstrate that the S-824 scaffold tolerates diverse amino acid substitutions in a putative cavity, including buried polar residues suitable for catalysis. We designed and created a DNA library encoding 1.7 × 106 unique protein sequences. This new library of stable de novo α-helical proteins is well suited for screens and selections for a range of functional activities in vitro and in vivo.
Collapse
|
9
|
Khrustalev VV, Khrustaleva TA, Poboinev VV, Karchevskaya CI, Shablovskaya EA, Terechova TG. Cobalt(ii) cation binding by proteins. Metallomics 2019; 11:1743-1752. [DOI: 10.1039/c9mt00205g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a set of non-homologous proteins (238) that could bind the cobalt(ii) cations was selected from all the available Protein Data Bank structures with Co2+ cations.
Collapse
Affiliation(s)
| | - Tatyana Aleksandrovna Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory
- Institute of Physiology of the National Academy of Sciences of Belarus
- Minsk, Academicheskaya, 28
- Belarus
| | | | | | | | | |
Collapse
|