1
|
Šponer JE, Coulon R, Otyepka M, Šponer J, Siegle AF, Trapp O, Ślepokura K, Zdráhal Z, Šedo O. Phosphoric acid salts of amino acids as a source of oligopeptides on the early Earth. Commun Chem 2024; 7:185. [PMID: 39174757 PMCID: PMC11341901 DOI: 10.1038/s42004-024-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Because of their unique proton-conductivity, chains of phosphoric acid molecules are excellent proton-transfer catalysts. Here we demonstrate that this property could have been exploited for the prebiotic synthesis of the first oligopeptide sequences on our planet. Our results suggest that drying highly diluted solutions containing amino acids (like glycine, histidine and arginine) and phosphates in comparable concentrations at elevated temperatures (ca. 80 °C) in an acidic environment could lead to the accumulation of amino acid:phosphoric acid crystalline salts. Subsequent heating of these materials at 100 °C for 1-3 days results in the formation of oligoglycines consisting of up to 24 monomeric units, while arginine and histidine form shorter oligomers (up to trimers) only. Overall, our results suggest that combining the catalytic effect of phosphate chains with the crystalline order present in amino acid:phosphoric acid salts represents a viable solution that could be utilized to generate the first oligopeptide sequences in a mild acidic hydrothermal field scenario. Further, we propose that crystallization could help overcoming cyclic oligomer formation that is a generally known bottleneck of prebiotic polymerization processes preventing further chain growth.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, Czech Republic.
- CATRIN-Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, Czech Republic.
| | - Rémi Coulon
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, Czech Republic
- CATRIN-Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc, Czech Republic
| | - Michal Otyepka
- CATRIN-Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, Czech Republic
- CATRIN-Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, Czech Republic
| | - Alexander F Siegle
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München, Germany
| | - Katarzyna Ślepokura
- University of Wrocław, Faculty of Chemistry, 14 F. Joliot-Curie, Wrocław, Poland
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, Brno, Czech Republic.
| |
Collapse
|
2
|
David R, Tuñón I, Laage D. Competing Reaction Mechanisms of Peptide Bond Formation in Water Revealed by Deep Potential Molecular Dynamics and Path Sampling. J Am Chem Soc 2024; 146:14213-14224. [PMID: 38739765 DOI: 10.1021/jacs.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The formation of an amide bond is an essential step in the synthesis of materials and drugs, and in the assembly of amino acids to form peptides. The mechanism of this reaction has been studied extensively, in particular to understand how it can be catalyzed, but a representation capable of explaining all the experimental data is still lacking. Numerical simulation should provide the necessary molecular description, but the solvent involvement poses a number of challenges. Here, we combine the efficiency and accuracy of neural network potential-based reactive molecular dynamics with the extensive and unbiased exploration of reaction pathways provided by transition path sampling. Using microsecond-scale simulations at the density functional theory level, we show that this method reveals the presence of two competing distinct mechanisms for peptide bond formation between alanine esters in aqueous solution. We describe how both reaction pathways, via a general base catalysis mechanism and via direct cleavage of the tetrahedral intermediate respectively, change with pH. This result contrasts with the conventional mechanism involving a single pathway in which only the barrier heights are affected by pH. We show that this new proposal involving two competing mechanisms is consistent with the experimental data, and we discuss the implications for peptide bond formation under prebiotic conditions and in the ribosome. Our work shows that integrating deep potential molecular dynamics with path sampling provides a powerful approach for exploring complex chemical mechanisms.
Collapse
Affiliation(s)
- Rolf David
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, Burjassot, 46100 Valencia, Spain
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Kumar A, Safran SA. Fluctuations and Shape Dependence of Microphase Separation in Systems with Long-Range Interactions. PHYSICAL REVIEW LETTERS 2023; 131:258401. [PMID: 38181373 DOI: 10.1103/physrevlett.131.258401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The combination of phase separation and long-ranged, effective, Coulomb interactions results in microphase separation. We predict the sizes and shapes of such microdomains and uniquely their dependence on the macroscopic sample shape which also affects the effective interfacial tension of fluctuations of the lamellar phase. These are applied to equilibrium salt solutions and block copolymers. Nonequilibrium phase separation in the presence of chemical reactions (e.g., cellular condensates) is mapped to the Coulomb theory to which our predictions apply. In some cases, the effective interfacial tension can be ultralow.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Benayad Z, Bova Saint-André M, Stirnemann G. Molecular Mechanisms of Phosphoester Bond Formation in Water Using Tight-Binding Ab Initio Molecular Dynamics. J Phys Chem B 2022; 126:8251-8265. [PMID: 36201374 DOI: 10.1021/acs.jpcb.2c04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphate groups are ubiquitous in biomolecules and are usually incorporated through phosphoester bonds between alcohol groups and orthophosphate. The formation of this bond is exceptionally difficult, with associated barriers of 30-45 kcal/mol in the absence of catalysts. In abiotic conditions, polymerizing nucleic acids without enzymes remains very challenging and is still a partly unsolved problem that severely questions the RNA World hypothesis for the origins of life. Offering a solution to this problem would involve a detailed knowledge of the reaction energetics and mechanisms, yet these remain not fully understood at a molecular level, especially because of the very slow reaction rates that represent a significant challenge for the experiments. The number of involved reaction coordinates and the possible role of the solvent in assisting the reaction are challenging for computational studies. Here, we use extensive ab initio molecular dynamics simulations using semiempirical tight-binding methods and enhanced sampling to address these issues. We first show that the choice of the tight-binding method is greatly limited by the instability of the water liquid phase for most DFTB generations and parameter sets that are widely available. We then focus on a model reaction involving methanol and orthophosphate, for which the two protonation states (mono- and dianionic) that are dominant around neutral pH are considered. We compare different proton coordinates that enable (or not) the participation of solvent water molecules. Our simulations suggest that in all cases, a dissociative associative mechanism, with an intermediate metaphosphate, is favored. The main difference between the two phosphate species is that reaction with the monoanion is assisted by the substrate, while that with the dianion involves solvent water molecules. Our results are in agreement with early experimental measurements, but the reaction barriers are underestimated in our framework. We believe that our approach provides an interesting perspective on how to sample the reaction phase space efficiently, but it calls for future studies using more accurate descriptions of chemical reactivity.
Collapse
Affiliation(s)
- Zakarya Benayad
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005Paris, France
| | - Matthias Bova Saint-André
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005Paris, France
| |
Collapse
|
5
|
Gan D, Ying J, Zhao Y. Prebiotic Chemistry: The Role of Trimetaphosphate in Prebiotic Chemical Evolution. Front Chem 2022; 10:941228. [PMID: 35910738 PMCID: PMC9326000 DOI: 10.3389/fchem.2022.941228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Life’s origins have always been a scientific puzzle. Understanding the production of biomolecules is crucial for understanding the evolution of life on Earth. Numerous studies on trimetaphosphate have been conducted in the field of prebiotic chemistry. However, its role in prebiotic chemistry has been documented infrequently in the review literature. The goal of this thesis is to review the role of trimetaphosphate in the early Earth’s biomolecule synthesis and phosphorylation. Additionally, various trimetaphosphate-mediated reaction pathways are discussed, as well as the role of trimetaphosphate in prebiotic chemistry. Finally, in our opinion, interactions between biomolecules should be considered in prebiotic synthesis scenarios since this may result in some advances in subsequent research on this subject. The research establishes an essential and opportune foundation for an in-depth examination of the “mystery of life".
Collapse
Affiliation(s)
- Dingwei Gan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- *Correspondence: Jianxi Ying,
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|
7
|
Barreiro-Lage D, Bolognesi P, Chiarinelli J, Richter R, Zettergren H, Stockett MH, Carlini L, Diaz-Tendero S, Avaldi L. "Smart Decomposition" of Cyclic Alanine-Alanine Dipeptide by VUV Radiation: A Seed for the Synthesis of Biologically Relevant Species. J Phys Chem Lett 2021; 12:7379-7386. [PMID: 34324354 DOI: 10.1021/acs.jpclett.1c01788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A combined experimental and theoretical study shows how the interaction of VUV radiation with cyclo-(alanine-alanine), one of the 2,5-diketopiperazines (DKPs), produces reactive oxazolidinone intermediates. The theoretical simulations reveal that the interaction of these intermediates with other neutral and charged fragments, released in the molecular decomposition, leads either to the reconstruction of the cyclic dipeptide or to the formation of longer linear peptide chains. These results may explain how DKPs could have, on one hand, survived hostile chemical environments and, on the other, provided the seed for amino acid polymerization. Shedding light on the mechanisms of production of such prebiotic building blocks is of paramount importance to understanding the abiotic synthesis of relevant biologically active compounds.
Collapse
Affiliation(s)
- Darío Barreiro-Lage
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paola Bolognesi
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Jacopo Chiarinelli
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Robert Richter
- Elettra Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - Mark H Stockett
- Department of Physics, Stockholm University, Se-10691 Stockholm, Sweden
| | - Laura Carlini
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| | - Sergio Diaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lorenzo Avaldi
- Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015 Monterotondo, Italy
| |
Collapse
|
8
|
Wang W, Qiao L, He J, Ju Y, Yu K, Kan G, Guo C, Zhang H, Jiang J. Water Microdroplets Allow Spontaneously Abiotic Production of Peptides. J Phys Chem Lett 2021; 12:5774-5780. [PMID: 34134488 DOI: 10.1021/acs.jpclett.1c01083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemistry of abiotic synthesis of peptides in the context of their prebiotic origins is a continuing challenge that arises from thermodynamic and kinetic constraints in aqueous media. Here we reported a strategy of microdroplets' mass spectrometry for peptide bonds formed from pure amino acids or a mixture in the presence of phosphoric acids in aqueous microdroplets. In contrast to bulk experiments, the condensation reactions proceed spontaneously under ambient conditions. The microdroplet gave a negative free-energy change (ΔG ∼ -1.1 kcal/mol), and product yields of ∼75% were obtained at the scale of a few milliseconds. Experiments in which nebulization gas pressure and external charge were varied established dependence of peptide production on the droplet size that has a high surface-to-volume ratio. It is concluded that the condensation reactions occurred at or near the air-water interfaces of microdroplets. This aqueous microdroplets approach also provides a route for chemistry synthesis in the prebiotic era.
Collapse
Affiliation(s)
- Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Changlu Guo
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
9
|
Kasprzhitskii A, Lazorenko G, Nazdracheva T, Kukharskii A, Yavna V, Kochur A. Theoretical evaluation of the corrosion inhibition performance of aliphatic dipeptides. NEW J CHEM 2021. [DOI: 10.1039/d0nj05281g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The peptide molecular group participates in donor-accepting processes by interacting with the metal surface. It boosts adsorption interaction with the metal surface which enhances the inhibitory effect.
Collapse
Affiliation(s)
- Anton Kasprzhitskii
- Rostov State Transport University
- Rostov-on-Don
- Russia
- Mineralica Limited Liability Company
- Skolkovo Innovation Center
| | - Georgy Lazorenko
- Rostov State Transport University
- Rostov-on-Don
- Russia
- Mineralica Limited Liability Company
- Skolkovo Innovation Center
| | | | - Aleksandr Kukharskii
- Mineralica Limited Liability Company
- Skolkovo Innovation Center
- Moscow
- Russia
- Skolkovo Institute of Science and Technology
| | - Victor Yavna
- Rostov State Transport University
- Rostov-on-Don
- Russia
| | - Andrei Kochur
- Rostov State Transport University
- Rostov-on-Don
- Russia
| |
Collapse
|
10
|
Recent Results on Computational Molecular Modeling of The Origins of Life. FOUNDATIONS OF COMPUTING AND DECISION SCIENCES 2020. [DOI: 10.2478/fcds-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In the last decade of research in the origins of life, there has been an increase in the interest on theoretical molecular modeling methods aimed to improve the accuracy and speed of the algorithms that solve the molecular mechanics and chemical reactions of the matter. Research on the scenarios of prebiotic chemistry has also advanced. The presented work attempts to discuss the latest computational techniques and trends implemented so far. Although it is difficult to cover the full extent of the current publications, we tried to orient the reader into the modern tendencies and challenges faced by those who are in the origins of life field.
Collapse
|