1
|
Elkhenany H, Soliman MW, Atta D, El-Badri N. Innovative Marine-Sourced Hydroxyapatite, Chitosan, Collagen, and Gelatin for Eco-Friendly Bone and Cartilage Regeneration. J Biomed Mater Res A 2025; 113:e37833. [PMID: 39508545 DOI: 10.1002/jbm.a.37833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
In recent years, the exploration of sustainable alternatives in the field of bone tissue engineering has led researchers to focus on marine waste byproducts as a valuable resource. These marine resources, often overlooked remnants of various industries, exhibit a rich composition of hydroxyapatite, collagen, calcium carbonate, and other minerals essential to the complex framework of bone structure. Marine waste by-products can emit gases such as methane and carbon dioxide, highlighting the urgency to repurpose these materials for innovative tissue regeneration solutions, offering a sustainable approach to address environmental challenges while advancing medical science. Using these discarded materials offers a promising pathway for sustainable development in regenerative medicine. This review investigates the distinctive properties of marine waste byproducts, emphasizing their capacity to be recycled effectively to contribute to the rebuilding of bone and cartilage tissue during regeneration processes. We also highlight the compatibility of these resources with biological materials such as platelet-rich plasma (PRP), stem cells, exosomes, and natural bioproducts, as well as nanoparticles (NPs) and polymers. By using the natural potential of these resources, we simultaneously address environmental challenges and promote innovative solutions in skeletal tissue engineering, initiating a new era of environmentally green biomedical research.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
2
|
Vranceanu DM, Ungureanu E, Ionescu IC, Parau AC, Pruna V, Titorencu I, Badea M, Gălbău CȘ, Idomir M, Dinu M, (Dragomir) AV, Cotrut CM. In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titanium. Biomimetics (Basel) 2024; 9:244. [PMID: 38667255 PMCID: PMC11047857 DOI: 10.3390/biomimetics9040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Biomaterials are an important and integrated part of modern medicine, and their development and improvement are essential. The fundamental requirement of a biomaterial is found to be in its interaction with the surrounding environment, with which it must coexist. The aim of this study was to assess the biological characteristics of hydroxyapatite (HAp)-based coatings doped with Mg and Zn ions obtained by the pulsed galvanostatic electrochemical method on the surface of pure titanium (cp-Ti) functionalized with titanium dioxide nanotubes (NTs TiO2) obtained by anodic oxidation. The obtained results highlighted that the addition of Zn or Mg into the HAp structure enhances the in vitro response of the cp-Ti surface functionalized with NT TiO2. The contact angle and surface free energy showed that all the developed surfaces have a hydrophilic character in comparison with the cp-Ti surface. The HAp-based coatings doped with Zn registered superior values than the ones with Mg, in terms of biomineralization, electrochemical behavior, and cell interaction. Overall, it can be said that the addition of Mg or Zn can enhance the in vitro behavior of the HAp-based coatings in accordance with clinical requirements. Antibacterial tests showed that the proposed HAp-Mg coatings had no efficiency against Escherichia coli, while the HAp-Zn coatings registered the highest antibacterial efficiency.
Collapse
Affiliation(s)
- Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Ionut C. Ionescu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| | - Anca C. Parau
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | - Mihaela Badea
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Cristina-Ștefania Gălbău
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Mihaela Idomir
- Prophylactic and Clinical Disciplines, Department of Fundamental, Faculty of Medicine, Transilvania University of Brasov, 56 Nicolae Balcescu, 500019 Brasov, Romania
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute, Transilvania University of Brasov, Romania Institutului, 10, 500484 Brașov, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Alina Vladescu (Dragomir)
- National Institute of Research and Development for Optoelectronics INOE2000, 409 Atomistilor, 077125 Magurele, Romania
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.M.V.)
| |
Collapse
|
3
|
Nitu, Fopase R, Pandey LM, Hazarika KP, Borah JP, Singh RK, Srinivasan A. Enhancement in the induction heating efficacy of sol-gel derived SiO 2-CaO-Na 2O-P 2O 5 bioglass-ceramics by incorporating magnetite nanoparticles. J Mater Chem B 2024; 12:3494-3508. [PMID: 38512116 DOI: 10.1039/d3tb03014h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.
Collapse
Affiliation(s)
- Nitu
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati 781039, India
| | - Lalit Mohan Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati 781039, India
| | - Krishna Priya Hazarika
- Department of Science and Humanities, National Institute of Technology Nagaland, 797103, India
| | - Jyoti Prasad Borah
- Department of Science and Humanities, National Institute of Technology Nagaland, 797103, India
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | | |
Collapse
|
4
|
Nitu, Fopase R, Pandey LM, Seal P, Borah JP, Srinivasan A. Assessment of sol-gel derived iron oxide substituted 45S5 bioglass-ceramics for biomedical applications. J Mater Chem B 2023; 11:7502-7513. [PMID: 37458109 DOI: 10.1039/d3tb00287j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Magnetic bioactive glass-ceramic (MGC) powders with nominal compositions of (45 - x)SiO224.5CaO24.5Na2O6P2O5xFe2O3 (x = 2, 4, 6, 8, 10, and 15 wt%) have been synthesized by a sol-gel route by systematically substituting silicon dioxide with iron oxide in Hench's 45S5 glass composition. Powder X-ray diffraction studies revealed a variation in the percentage of combeite (Ca2Na2Si3O9), magnetite (Fe3O4), and hematite (Fe2O3) nanocrystalline phases in MGC powders as a function of composition. Zeta potential measurements showed that MGC containing up to 10 wt% iron oxide formed stable suspensions. The saturation magnetization and heat generation capacity of MGC fluids increased with an increase in iron oxide content. Degradation of MGC powders was investigated in phosphate buffered saline (PBS). The in vitro bioactivity of the MGC powders taken in pellet form was confirmed by observing the pH variation as well as hydroxyapatite layer (HAp) formation upon soaking in modified simulated body fluid. These studies showed a decrement in the overall bioactivity in samples with high iron oxide content due to the proportional decrease in the silanol group. Monitoring the proliferation of MG-63 osteoblast cells in Dulbecco's Modified Eagle Medium (DMEM) revealed that MGC with up to 10 wt% iron oxide exhibited acceptable viability. The systematic study revealed that the MGC with 10 wt% iron oxide exhibited optimal cell viability, magnetic properties and induction heating capacity, which were better than those of FluidMag-CT, which is used for hyperthermia treatment.
Collapse
Affiliation(s)
- Nitu
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Rushikesh Fopase
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Lalit Mohan Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Papori Seal
- Department of Science and Humanities, National Institute of Technology Nagaland, 797103, India
| | - Jyoti Prasad Borah
- Department of Science and Humanities, National Institute of Technology Nagaland, 797103, India
| | | |
Collapse
|
5
|
Ungureanu E, Vladescu (Dragomir) A, Parau AC, Mitran V, Cimpean A, Tarcolea M, Vranceanu DM, Cotrut CM. In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5428. [PMID: 37570133 PMCID: PMC10419960 DOI: 10.3390/ma16155428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Osseointegration plays the most important role in the success of an implant. One of the applications of hydroxyapatite (HAp) is as a coating for metallic implants due to its bioactive nature, which improves osteoconduction. The purpose of this research was to assess the in vitro behavior of HAp undoped and doped with Ag and/or Sr obtained by galvanostatic pulsed electrochemical deposition. The coatings were investigated in terms of chemical bonds, contact angle and surface free energy, electrochemical behavior, in vitro biomineralization in acellular media (SBF and PBS), and biocompatibility with preosteoblasts cells (MC3T3-E1 cell line). The obtained results highlighted the beneficial impact of Ag and/or Sr on the HAp. The FTIR spectra confirmed the presence of hydroxyapatite within all coatings, while in terms of wettability, the contact angle and surface free energy investigations showed that all surfaces were hydrophilic. The in vitro behavior of MC3T3-E1 indicated that the presence of Sr in the HAp coatings as a unique doping agent or in combination with Ag elicited improved cytocompatibility in terms of cell proliferation and osteogenic differentiation. Therefore, the composite HAp-based coatings showed promising potential for bone regeneration applications.
Collapse
Affiliation(s)
- Elena Ungureanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 409 Atomistilor Street, 77125 Magurele, Romania (A.C.P.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Independentei Street, 050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Mihai Tarcolea
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| | - Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (E.U.); (M.T.)
| |
Collapse
|
6
|
Usuda M, Kametani M, Hamada M, Suehiro Y, Matayoshi S, Okawa R, Naka S, Matsumoto-Nakano M, Akitomo T, Mitsuhata C, Koumoto K, Kawauchi K, Nishikata T, Yagi M, Mizoguchi T, Fujikawa K, Taniguchi T, Nakano K, Nomura R. Inhibitory Effect of Adsorption of Streptococcus mutans onto Scallop-Derived Hydroxyapatite. Int J Mol Sci 2023; 24:11371. [PMID: 37511130 PMCID: PMC10379008 DOI: 10.3390/ijms241411371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hydroxyapatite adsorbs various substances, but little is known about the effects on oral bacteria of adsorption onto hydroxyapatite derived from scallop shells. In the present study, we analyzed the effects of adsorption of Streptococcus mutans onto scallop-derived hydroxyapatite. When scallop-derived hydroxyapatite was mixed with S. mutans, a high proportion of the bacterial cells adsorbed onto the hydroxyapatite in a time-dependent manner. An RNA sequencing analysis of S. mutans adsorbed onto hydroxyapatite showed that the upregulation of genes resulted in abnormalities in pathways involved in glycogen and histidine metabolism and biosynthesis compared with cells in the absence of hydroxyapatite. S. mutans adsorbed onto hydroxyapatite was not killed, but the growth of the bacteria was inhibited. Electron microscopy showed morphological changes in S. mutans cells adsorbed onto hydroxyapatite. Our results suggest that hydroxyapatite derived from scallop shells showed a high adsorption ability for S. mutans. This hydroxyapatite also caused changes in gene expression related to the metabolic and biosynthetic processes, including the glycogen and histidine of S. mutans, which may result in a morphological change in the surface layer and the inhibition of the growth of the bacteria.
Collapse
Affiliation(s)
- Momoko Usuda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Mariko Kametani
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuya Koumoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan
| | - Takahito Nishikata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan
| | - Masatoshi Yagi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Pharmacrea Kobe Co., Ltd., Kobe 651-0085, Japan
| | - Toshiro Mizoguchi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- TSET Co., Ltd., Kariya 448-0022, Japan
| | - Koki Fujikawa
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- TSET Co., Ltd., Kariya 448-0022, Japan
| | - Taizo Taniguchi
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Pharmacrea Kobe Co., Ltd., Kobe 651-0085, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
- Joint Research Laboratory of Next-Generation Science for Oral Infection Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| |
Collapse
|
7
|
Mocanu AC, Miculescu F, Constantinescu AE, Pandele MA, Voicu ȘI, Cîmpean A, Miculescu M, Negrescu AM. Selection Route of Precursor Materials in 3D Printing Composite Filament Development for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2359. [PMID: 36984239 PMCID: PMC10058857 DOI: 10.3390/ma16062359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Additive manufacturing or 3D printing technologies might advance the fabrication sector of personalised biomaterials with high-tech precision. The selection of optimal precursor materials is considered the first key-step for the development of new printable filaments destined for the fabrication of products with diverse orthopaedic/dental applications. The selection route of precursor materials proposed in this study targeted two categories of materials: prime materials, for the polymeric matrix (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA)); and reinforcement materials (natural hydroxyapatite (HA) and graphene nanoplatelets (GNP) of different dimensions). HA was isolated from bovine bones (HA particles size < 40 μm, <100 μm, and >125 μm) through a reproducible synthesis technology. The structural (FTIR-ATR, Raman spectroscopy), morphological (SEM), and, most importantly, in vitro (indirect and direct contact studies) features of all precursor materials were comparatively evaluated. The polymeric materials were also prepared in the form of thin plates, for an advanced cell viability assessment (direct contact studies). The overall results confirmed once again the reproducibility of the HA synthesis method. Moreover, the biological cytotoxicity assays established the safe selection of PLA as a future polymeric matrix, with GNP of grade M as a reinforcement and HA as a bioceramic. Therefore, the obtained results pinpointed these materials as optimal for future composite filament synthesis and the 3D printing of implantable structures.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Andreea Elena Constantinescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Mădălina-Andreea Pandele
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Anișoara Cîmpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Marian Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| |
Collapse
|
8
|
Galván-Chacón V, de Melo Pereira D, Vermeulen S, Yuan H, Li J, Habibović P. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic. Bioact Mater 2023; 19:127-138. [PMID: 35475029 PMCID: PMC9014318 DOI: 10.1016/j.bioactmat.2022.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- V.P. Galván-Chacón
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - D. de Melo Pereira
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - S. Vermeulen
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - H. Yuan
- Kuros Biosciences BV, 3723 MB, Bilthoven, the Netherlands
| | - J. Li
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - P. Habibović
- MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, the Netherlands
- Corresponding author. Maastricht University, MERLN Institute, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Mocanu AC, Miculescu F, Stan GE, Pasuk I, Tite T, Pascu A, Butte TM, Ciocan LT. Modulated Laser Cladding of Implant-Type Coatings by Bovine-Bone-Derived Hydroxyapatite Powder Injection on Ti6Al4V Substrates-Part I: Fabrication and Physico-Chemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7971. [PMID: 36431457 PMCID: PMC9695758 DOI: 10.3390/ma15227971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that have the capacity to enhance osseointegration) and titanium alloys (used as bulk implant materials due to their mechanical performance and lack of systemic toxicity). For the first time, bovine-bone-derived hydroxyapatite (BHA) was layered on top of Ti6Al4V substrates using powder injection laser cladding technology, and then subjected, in this first stage of the research, to an array of physical-chemical analyses. The laser processing set-up involved the conjoined modulation of the BHA-to-Ti ratio (100 wt.% and 50 wt.%) and beam power range (500-1000 W). As such, on each metallic substrate, several overlapped strips were produced and the external surface of the cladded coatings was further investigated. The morphological and compositional (SEM/EDS) evaluations exposed fully covered metallic surfaces with ceramic-based materials, without any fragmentation and with a strong metallurgical bond. The structural (XRD, micro-Raman) analyses showed the formation of calcium titanate as the main phase up to maximum 800 W, accompanied by partial BHA decomposition and the consequential advent of tetracalcium phosphate (markedly above 600 W), independent of the BHA ratio. In addition, the hydrophilic behavior of the coatings was outlined, being linked to the varied surface textures and phase dynamism that emerged due to laser power increment for both of the employed BHA ratios. Hence, this research delineates a series of optimal laser cladding technological parameters for the adequate deposition of bioceramic layers with customized functionality.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (T.M.B.)
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (T.M.B.)
| | - George E. Stan
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania; (G.E.S.); (I.P.); (T.T.)
| | - Iuliana Pasuk
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania; (G.E.S.); (I.P.); (T.T.)
| | - Teddy Tite
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania; (G.E.S.); (I.P.); (T.T.)
| | - Alexandru Pascu
- Department of Materials Engineering and Welding, University Transilvania of Brasov, 29 Eroilor Blvd., RO-500036 Brasov, Romania;
| | - Tudor Mihai Butte
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (T.M.B.)
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, RO-020022 Bucharest, Romania;
| |
Collapse
|
10
|
Radulescu DE, Neacsu IA, Grumezescu AM, Andronescu E. Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering. Polymers (Basel) 2022; 14:899. [PMID: 35267722 PMCID: PMC8912671 DOI: 10.3390/polym14050899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, the number of people needing bone replacements for the treatment of defects caused by chronic diseases or accidents has continuously increased. To solve these problems, tissue engineering has gained significant attention in the biomedical field, by focusing on the development of suitable materials that improve osseointegration and biologic activity. In this direction, the development of an ideal material that provides good osseointegration, increased antimicrobial activity and preserves good mechanical properties has been the main challenge. Currently, bone tissue engineering focuses on the development of materials with tailorable properties, by combining polymers and ceramics to meet the necessary complex requirements. This study presents the main polymers applied in tissue engineering, considering their advantages and drawbacks. Considering the potential disadvantages of polymers, improving the applicability of the material and the combination with a ceramic material is the optimum pathway to increase the mechanical stability and mineralization process. Thus, ceramic materials obtained from natural sources (e.g., hydroxyapatite) are preferred to improve bioactivity, due to their similarity to the native hydroxyapatite found in the composition of human bone.
Collapse
Affiliation(s)
- Diana-Elena Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-E.R.); (A.-M.G.); (E.A.)
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-E.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-E.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-E.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
11
|
Fabrication, Characterization and In Vitro Assessment of Laevistrombus canarium-Derived Hydroxyapatite Particulate-Filled Polymer Composite for Implant Applications. Polymers (Basel) 2022; 14:polym14050872. [PMID: 35267694 PMCID: PMC8912798 DOI: 10.3390/polym14050872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
This paper presents the formulation, characterization, and in vitro studies of polymer composite material impregnated with naturally derived hydroxyapatite (HA) particulates for biomedical implant applications. Laevistrombus canarium (LC) seashells (SS) were collected, washed and cleaned, sun-dried for 24 h, and ground into powder particulates. The SS particulates of different weight percentages (0, 10, 20, 30, 40, 50 wt%)-loaded high-density polyethylene (HDPE) composites were fabricated by compression molding for comparative in vitro assessment. A temperature-controlled compression molding technique was used with the operating pressure of 2 to 3 bars for particulate retention in the HDPE matrix during molding. The HDPE/LC composite was fabricated and characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), differential scanning calorimetry (DSC), and TGA. Mechanical properties such as tensile, compression, flexural, hardness, and also surface roughness were tested as per ASTM standards. Mass degradation and thermal stability of the HDPE/LC composite were evaluated at different temperatures ranging from 10 to 700 °C using thermogravimetric analysis (TGA). The maximum tensile strength was found to be 27 ± 0.5 MPa for 30 wt% HDPE/LC composite. The thermal energy absorbed during endothermic processes was recorded as 71.24 J/g and the peak melting temperature (Tm) was found to be 128.4 °C for the same 30 wt% of HDPE/LC composite specimen. Excellent cell viability was observed during the in vitro biocompatibility study for EtO-sterilized 30 wt% of HDPE/LC composite specimen, except for a report of mild cytotoxicity in the case of higher concentration (50 µL) of the MG-63 cell line. The results demonstrate the potential of the fabricated composite as a suitable biomaterial for medical implant applications.
Collapse
|
12
|
SiC- and Ag-SiC-Doped Hydroxyapatite Coatings Grown Using Magnetron Sputtering on Ti Alloy for Biomedical Application. COATINGS 2022. [DOI: 10.3390/coatings12020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SiC- and Ag-SiC-doped hydroxyapatite (HA) coatings were deposited via magnetron sputtering aiming at increased corrosion protection of Ti-10Nb-10Zr-5Ta alloy in simulated body fluid environment and superior mechanical properties compared to plain hydroxyapatite. The coatings had a total thickness of about 350 nm. The X ray diffraction patterns indicate that HA coatings are polycrystalline with a hexagonal structure and the addition of SiC determined the coating amorphization. All coatings presented a lower roughness compared to the Ti alloy and were hydrophilic. Ag-SiC-HA coating presented the best corrosion resistance and tribological parameters. All coatings were biocompatible, as ascertained via indirect cytocompatibility studies conducted on Vero cells.
Collapse
|
13
|
Porous Biphasic Calcium Phosphate Granules from Oyster Shell Promote the Differentiation of Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22179444. [PMID: 34502354 PMCID: PMC8430496 DOI: 10.3390/ijms22179444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Oyster shells are rich in calcium, and thus, the potential use of waste shells is in the production of calcium phosphate (CaP) minerals for osteopathic biomedical applications, such as scaffolds for bone regeneration. Implanted scaffolds should stimulate the differentiation of induced pluripotent stem cells (iPSCs) into osteoblasts. In this study, oyster shells were used to produce nano-grade hydroxyapatite (HA) powder by the liquid-phase precipitation. Then, biphasic CaP (BCP) bioceramics with two different phase ratios were obtained by the foaming of HA nanopowders and sintering by two different two-stage heat treatment processes. The different sintering conditions yielded differences in structure and morphology of the BCPs, as determined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) surface area analysis. We then set out to determine which of these materials were most biocompatible, by co-culturing with iPSCs and examining the gene expression in molecular pathways involved in self-renewal and differentiation of iPSCs. We found that sintering for a shorter time at higher temperatures gave higher expression levels of markers for proliferation and (early) differentiation of the osteoblast. The differences in biocompatibility may be related to a more hierarchical pore structure (micropores within macropores) obtained with briefer, high-temperature sintering.
Collapse
|
14
|
Rial R, González-Durruthy M, Liu Z, Ruso JM. Advanced Materials Based on Nanosized Hydroxyapatite. Molecules 2021; 26:3190. [PMID: 34073479 PMCID: PMC8198166 DOI: 10.3390/molecules26113190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023] Open
Abstract
The development of new materials based on hydroxyapatite has undergone a great evolution in recent decades due to technological advances and development of computational techniques. The focus of this review is the various attempts to improve new hydroxyapatite-based materials. First, we comment on the most used processing routes, highlighting their advantages and disadvantages. We will now focus on other routes, less common due to their specificity and/or recent development. We also include a block dedicated to the impact of computational techniques in the development of these new systems, including: QSAR, DFT, Finite Elements of Machine Learning. In the following part we focus on the most innovative applications of these materials, ranging from medicine to new disciplines such as catalysis, environment, filtration, or energy. The review concludes with an outlook for possible new research directions.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| | - Michael González-Durruthy
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA;
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.R.); (M.G.-D.)
| |
Collapse
|
15
|
Mocanu AC, Miculescu F, Stan GE, Pandele AM, Pop MA, Ciocoiu RC, Voicu ȘI, Ciocan LT. Fiber-Templated 3D Calcium-Phosphate Scaffolds for Biomedical Applications: The Role of the Thermal Treatment Ambient on Physico-Chemical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2198. [PMID: 33922963 PMCID: PMC8123353 DOI: 10.3390/ma14092198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
A successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and Luffa-fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient. The experiments exposed that the coupling of a nitrogen ambient with the graphene admixing triggers, in both compact and porous samples, important structural (i.e., decomposition of β-Ca3(PO4)2 into α-Ca3(PO4)2 and α-Ca2P2O7) and morphological modifications. Certain restrictions and benefits were outlined with respect to the spatial porosity and global mechanical features of the derived bone scaffolds. Specifically, in nitrogen ambient, the graphene amount should be set to a maximum 0.25 wt.% in the case of compact products, while for the porous ones, significantly augmented compressive strengths were revealed at all graphene amounts. The sintering ambient or the graphene addition did not interfere with the Luffa ability to generate 3D-channels-arrays at high temperatures. It can be concluded that both Luffa and graphene agents act as adjuvants under nitrogen ambient, and that their incorporation-ratio can be modulated to favorably fit certain foreseeable biomedical applications.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - George E. Stan
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania;
| | - Andreea-Mădălina Pandele
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania; (A.-M.P.); (Ş.I.V.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania
| | - Mihai Alin Pop
- Department of Materials Science, Faculty of Materials Science and Engineering, ICDT, University Transilvania of Brasov, 10 Institutului, RO-500484 Brasov, Romania;
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania; (A.-M.P.); (Ş.I.V.)
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, RO-020022 Bucharest, Romania;
| |
Collapse
|
16
|
Chen G, Fu Z, Guo H, Kumar Pradhan S, Hao P. Study of accumulation behaviour of tungsten based composite using electron probe micro analyser for the application in bone tissue engineering. Saudi J Biol Sci 2020; 27:2936-2941. [PMID: 33100849 PMCID: PMC7569116 DOI: 10.1016/j.sjbs.2020.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 10/28/2022] Open
Abstract
In this research, a proto-type study we have conducted, where we have synthesized tungsten based composite materials which are tungsten along with combined oxides of other elements like calcium, scandium, barium, and aluminium in the form of powder with bones powder of mice devised by high energy ball mill and later on fabricating high dense pellets by sintering by spark plasma. The particle sizes of the composite materials are found to be 1-2 µm, as evidenced by the electron microscope, suggesting synthesized materials are of micron size. The quantitative and qualitative analysis of sintered pellets are well confirmed by electron probe micro analyzer (EPMA) and energy dispersive X-ray spectrometer (EDS) which illustrate the greater percentage of tungsten presents in the profound scan areas with other elements of the composite. The absence of pores across the 3D geometry suggesting dense sample, which is quite revealed by the X-ray tomography inspection. The prepared sintered pellets from the tungsten based composites are found to be ≈ 99.5% density with the observation of tungsten to be accumulated uniformly across the scan regions along with focussed hot spots as implied by EPMA. This study paves the way, to examine how the tungsten accumulation and the distribution with the other elements for future understanding in bone tissue engineering application and the in vivo specification of tungsten.
Collapse
Affiliation(s)
- Gang Chen
- Department of Orthopedics, Binzhou People's Hospital, Binzhou 256610, China
| | - Zheng Fu
- Department of Orthopedics, Binzhou People's Hospital, Binzhou 256610, China
| | - Hongli Guo
- School of Health, Binzhou Polytechnic, Binzhou, Shandong Province 256603, China
| | - Sunil Kumar Pradhan
- School of Physical Science, Indian Institute of Science Education and Research, 760010, India
| | - Pan Hao
- Department of Trauma Center, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| |
Collapse
|
17
|
Li C, Qin W, Lakshmanan S, Ma X, Sun X, Xu B. Hydroxyapatite based biocomposite scaffold: A highly biocompatible material for bone regeneration. Saudi J Biol Sci 2020; 27:2143-2148. [PMID: 32742182 PMCID: PMC7384365 DOI: 10.1016/j.sjbs.2020.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022] Open
Abstract
The conventional approaches for treating bone defects such as autografts donor tissue shortages and allografts transmission of diseases pose many shortcomings. The objective of this study was to design a nano strontium/magnesium doped hydroxyapatite (Sr/Mg-HA) with chitosan (CTS) and multi-walled carbon nanotubes (MWCNT) (Sr/Mg-HA/MWCNT/CTS) biocomposite was created to support the growth of osteoblasts using a solvent evaporation method. To help the growth of osteoblasts, a solvent evaporation technique was used to design a nano strontium/magnesium doped hydroxyapatite with chitosan and multi-walled carbon nanotubes biocomposite. We studied the biocompatibility and efficiency in vitro of biocomposite following physicochemical analyzes. Tests of biocompatibility, cell proliferation, mineralization, and osteogenic differentiation have shown that in-vitro safety and effectiveness of biocomposite are good. The performance of biocomposite was more efficient in in-vitro as well as in vivo experiments than in Sr/Mg-HA nanoparticles. Briefly, the Sr/Mg-HA/MWCNT/CTS biocomposite is an ideal candidate for effective bone repair in clinics with excellent mechanical properties with durable multi-biofunctional antibacterial properties and osteoinductivity.
Collapse
Affiliation(s)
- Ceng Li
- Department of Orthopedics, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou city, Hubei Province 434000, China
| | - Weiguang Qin
- Department of Orthopaedic, Zhanhua District People's Hospital of Binzhou, Binzhou city, Shandong Province 256800, China
| | | | - Xiaohui Ma
- Department of Pharmacy, Tai'an Hospital of Traditional Chinese Medicine, Tai'an city, Shandong Province 271000 China
| | - Xiaowei Sun
- Office of Academic Research, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou city, Hubei Province 434000, China
| | - Bo Xu
- Department of Orthopaedics, Shanghai Pudong New Area Gongli Hospital, Shanghai city 200120, China
| |
Collapse
|
18
|
Magnesium Doped Hydroxyapatite-Based Coatings Obtained by Pulsed Galvanostatic Electrochemical Deposition with Adjustable Electrochemical Behavior. COATINGS 2020. [DOI: 10.3390/coatings10080727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to adapt the electrochemical behavior in synthetic body fluid (SBF) of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition through addition of Mg in different concentrations. The coatings were obtained by electrochemical deposition in a typical three electrodes electrochemical cell in galvanic pulsed mode. The electrolyte was obtained by subsequently dissolving Ca(NO3)2·4H2O, NH4H2PO4, and Mg(NO3)2·6H2O in ultra-pure water and the pH value was set to 5. The morphology consists of elongated and thin ribbon-like crystals for hydroxyapatite (HAp), which after the addition of Mg became a little wider. The elemental and phase composition evidenced that HAp was successfully doped with Mg through pulsed galvanostatic electrochemical deposition. The characteristics and properties of hydroxyapatite obtained electrochemically can be controlled by adding Mg in different concentrations, thus being able to obtain materials with different properties and characteristics. In addition, the addition of Mg can lead to the control of hydroxyapatite bioactive ceramics in terms of dissolution rate.
Collapse
|
19
|
Lertsuwan K, Nammultriputtar K, Nanthawuttiphan S, Tannop N, Teerapornpuntakit J, Thongbunchoo J, Charoenphandhu N. Differential effects of Fe2+ and Fe3+ on osteoblasts and the effects of 1,25(OH)2D3, deferiprone and extracellular calcium on osteoblast viability under iron-overloaded conditions. PLoS One 2020; 15:e0234009. [PMID: 32470038 PMCID: PMC7259719 DOI: 10.1371/journal.pone.0234009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
One of the potential contributing factors for iron overload-induced osteoporosis is the iron toxicity on bone forming cells, osteoblasts. In this study, the comparative effects of Fe3+ and Fe2+ on osteoblast differentiation and mineralization were studied in UMR-106 osteoblast cells by using ferric ammonium citrate and ferrous ammonium sulfate as Fe3+ and Fe2+ donors, respectively. Effects of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and iron chelator deferiprone on iron uptake ability of osteoblasts were examined, and the potential protective ability of 1,25(OH)2D3, deferiprone and extracellular calcium treatment in osteoblast cell survival under iron overload was also elucidated. The differential effects of Fe3+ and Fe2+ on reactive oxygen species (ROS) production in osteoblasts were also compared. Our results showed that both iron species suppressed alkaline phosphatase gene expression and mineralization with the stronger effects from Fe3+ than Fe2+. 1,25(OH)2D3 significantly increased the intracellular iron but minimally affected osteoblast cell survival under iron overload. Deferiprone markedly decreased intracellular iron in osteoblasts, but it could not recover iron-induced osteoblast cell death. Interestingly, extracellular calcium was able to rescue osteoblasts from iron-induced osteoblast cell death. Additionally, both iron species could induce ROS production and G0/G1 cell cycle arrest in osteoblasts with the stronger effects from Fe3+. In conclusions, Fe3+ and Fe2+ differentially compromised the osteoblast functions and viability, which can be alleviated by an increase in extracellular ionized calcium, but not 1,25(OH)2D3 or iron chelator deferiprone. This study has provided the invaluable information for therapeutic design targeting specific iron specie(s) in iron overload-induced osteoporosis. Moreover, an increase in extracellular calcium could be beneficial for this group of patients.
Collapse
Affiliation(s)
- Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Natnicha Tannop
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
20
|
Synthesis of Conductive Carbon Aerogels Decorated with β-Tricalcium Phosphate Nanocrystallites. Sci Rep 2020; 10:5758. [PMID: 32238872 PMCID: PMC7113289 DOI: 10.1038/s41598-020-62822-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
There has been substantial interest in research aimed at conductive carbon-based supports since the discovery that the electrical stimulus can have dramatic effect on cell behavior. Among these carbon-aerogels decorated with biocompatible polymers were suggested as future materials for tissue engineering. However, high reaction temperatures required for the synthesis of the aerogels tend to impair the stability of the polymeric networks. Herein, we report a synthetic route towards carbon-aerogel scaffolds decorated with biocompatible ceramic nanoparticles of tricalcium phosphate. The composites can be prepared at temperature as high as 1100 °C without significant effect on the morphology of the composite which is comparable with the original aerogel framework. Although the conductivity of the composites tends to decrease with the increasing ceramic content the measured conductivity values are similar to those previously reported on polymer-functionalized carbon-aerogels. The cell culture study revealed that the developed constructs support cell proliferation and provide good cell attachment suggesting them as potentially good candidates for tissue-engineering applications.
Collapse
|
21
|
Mucalo MR. Special Issue: Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates. MATERIALS 2019; 12:ma12030405. [PMID: 30696063 PMCID: PMC6384801 DOI: 10.3390/ma12030405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/07/2023]
Abstract
Research on calcium phosphate use in the development and clinical application of biomedical materials is a diverse activity and is genuinely interdisciplinary, with much work leading to innovative solutions for improvement of health outcomes. This Special Issue aimed to summarize current advances in this area. The nine papers published cover a wide spectrum of topical areas, such as (1) remineralisation pastes for decalcified teeth, (2) use of statins to enhance bone formation, (3) how dolomitic marble and seashells can be processed into bioceramic materials, (4) relationships between the roughness of calcium phosphate surfaces and surface charge with the effect on human MRC osteogenic differentiation and maturation being investigated, (5) rheological and mechanical properties of a novel injectable bone substitute, (6) improving strength of bone cements by incorporating reinforcing chemically modified fibres, (7) using adipose stem cells to stimulate osteogenesis, osteoinduction, and angiogenesis on calcium phosphates, (8) using glow discharge treatments to remove surface contaminants from biomedical materials to enhance cell attachment and improve bone generation, and (9) a review on how classically brittle hydroxyapatite based scaffolds can be improved by making fibre-hydroxyapatite composites, with detailed analysis of ceramic crack propagation mechanisms and its prevention via fibre incorporation in the hydroxyapatite.
Collapse
Affiliation(s)
- Michael R Mucalo
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|