1
|
Variation in the Optical Properties of PEO-Based Composites via a Green Metal Complex: Macroscopic Measurements to Explain Microscopic Quantum Transport from the Valence Band to the Conduction Band. Polymers (Basel) 2023; 15:polym15030771. [PMID: 36772071 PMCID: PMC9920557 DOI: 10.3390/polym15030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, a green chemistry method was used to synthesize polymer composites based on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is an environmentally friendly procedure with a low cost. Zinc metal ion (Zn2+)-polyphenol (PPHNL) complexes were synthesized for two minutes via the combination of a black tea leaf (BTL) extract solution with dissolved Zn-acetate. Then, UV-Vis and FTIR were carried out for the Zn-PPHNL complexes in a liquid and solid. The FTIR spectra show that BTLs contain sufficient functional groups (O-H, C-H, C=O, C=C, C-O, C-N, and N-H), PPHNL, and conjugated double bonds to produce metal complexes by capturing the cations of Zn-acetate salt. Moreover, FTIR of the BTL and Zn-PPHNL complexes approves the formation of the Zn-PPHNL complex over the wide variation in the intensity of bands. The UV absorption spectra of BTL and Zn-PPHNL indicate complex formation among tea PPHNL and Zn cations, which enhances the absorption spectra of the Zn-PPHNL to 0.1 compared to the figure of 0.01 associated with the extracted tea solution. According to an XRD analysis, an amorphous Zn-PPHNL complex was created when Zn2+ ions and PPHNL interacted. Additionally, XRD shows that the structure of the PEO composite becomes a more amorphous structure as the concentration of Zn-PPHNL increases. Furthermore, morphological study via an optical microscope (OM) shows that by increasing the concentration of Zn-PPHNL in a PEO polymer composite the size of the spherulites ascribed to the crystalline phase dramatically decreases. The optical properties of PEO: Zn-PPHNL films, via UV-Vis spectroscopy, were rigorously studied. The Eg is calculated by examining the dielectric loss, which is reduced from 5.5 eV to 0.6 eV by increasing the concentration of Zn-PPHNL in the PEO samples. In addition, Tauc's form was used to specify the category of electronic transitions in the PEO: Zn-PPHNL films. The impact of crystalline structure and morphology on electronic transition types was discussed. Macroscopic measurable parameters, such as the refractive index and extinction coefficient, were used to determine optical dielectric loss. Fundamental optical dielectric functions were used to determine some key parameters. From the viewpoint of quantum transport, electron transitions were discussed. The merit of this work is that microscopic processes related to electron transition from the VB to the CB can be interpreted interms of measurable macroscopic quantities.
Collapse
|
2
|
High-Transparency and Colorless Polyimide Film Prepared by Inhibiting the Formation of Chromophores. Polymers (Basel) 2022; 14:polym14194242. [PMID: 36236190 PMCID: PMC9571026 DOI: 10.3390/polym14194242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Colorless polyimides (CPIs) with outstanding mechanical properties are essential materials in the production of flexible display panels, foldable windows, and even spacecraft cockpits. This paper specifically elaborates that the Morkit unit, and azo and nitro chromophores are important factors contributing to yellow PI, together with the well-known charge transfer complex (CTC) theory. Three diamine monomers, two anhydrides monomers, and three blockers were used to inhibit chromophores formation and, thus, obtain CPI films. The cut-off wavelength was blue-shifts to 334 nm and the transmittance is improved to 98.9% in the UV–vis range. Mechanical and thermal properties of the CPI films are not reduced through coupling effects of the blockers. Therefore, the inhibition method of the Morkit units and chromophore groups is a promising process for preparing CPIs to be used as flexible display materials.
Collapse
|
3
|
Ammonium Polyphosphate Intercalated Yttrium-Doped Layered Double Hydroxides to Enhance the Thermal Stability and Flame Retardancy of Poly(Lactic Acid). ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/9205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The flammability of the biodegradable plastic PLA limits its application in industrial fields with high flame-retardant requirements. This paper provides a novel strategy for constructing refractory and thermostable PLA composites using layered double hydroxides (LDHs) chemically modified with ammonium polyphosphate (APP). XRD, FT-IR, SEM-EDS, and TEM confirm that the goal of LDHs has been successfully prepared. The thermal stability and combustion behavior of PLA composites were evaluated by the thermogravimetric analysis (TGA) and cone calorimetry tests (CCT). The crystallization behavior and tensile performances were also examined. The results showed that the incorporation of 15 wt% MgAlY-APP-LDHs practically makes the PLA composites reach the UL-94 V-0 grade. There were 43% and 20% reduction in the PHRR and THR of PLA/15APP-LDHs respectively due to the catalytic effect of Y elements and barrier effects of LDHs, which was a major performance against fire hazards. Furthermore, the increase in crystallinity and the decrease in mechanical strength of PLA composites are attributed to the nucleation of LDHs. In short, this research introduces the production of multifunctional PLA composites through APP intercalation of LDHs, which are deemed as prospective candidates for the next generation of sustainable plastics products.
Collapse
|
4
|
Kwac LK, Kim HG, Chang JH. Comparison of Properties of Colorless and Transparent Polyimide Nanocomposites Containing Different Diamine Monomers. ACS OMEGA 2021; 6:19006-19016. [PMID: 34337239 PMCID: PMC8320146 DOI: 10.1021/acsomega.1c02285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 06/03/2023]
Abstract
To improve the optical properties of polyimide (PI) films, we prepared two series of colorless transparent PIs from the dianhydride 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and a diamine, either 2,2-bis(3-aminophenyl)hexafluoropropane (FDN) or 2,2-bis(3-amino-4-hydroxy-phenyl)hexafluoropropane (FDN-OH). Next, colorless PI (CPI) composite films were prepared by dispersing 0-1.00 wt % of organically modified clay (Cloisite 30B) in the intermediate poly(amic acid) (PAA) solution via solution intercalation, followed by imidization. The resultant CPI films had excellent optical transparency, which was achieved by reducing the charge-transfer effects by using a highly electronegative trifluoromethyl group and a kinked monomer structure. The thermal and mechanical properties, morphologies, and optical transparencies of the two as-synthesized CPI hybrid film series were investigated and compared. Electron microscopy observation of the two hybrid series revealed that the clay was well-dispersed with a nanoscale dispersion at all clay contents. However, agglomeration occurred at nanoclay loadings of 1.0 wt %. In addition, the effect of the presence of hydroxyl groups in the PI chain on various physical properties of the two CPI hybrids was also compared.
Collapse
Affiliation(s)
- Lee Ku Kwac
- Graduate
School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea
- Institute
of Carbon Technology, Jeonju University, Jeonju 55069, Korea
| | - Hong Gun Kim
- Graduate
School of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea
- Institute
of Carbon Technology, Jeonju University, Jeonju 55069, Korea
| | - Jin-Hae Chang
- Institute
of Carbon Technology, Jeonju University, Jeonju 55069, Korea
| |
Collapse
|
5
|
Chen PC, Lin JC, Chiang CH, Chen YC, Chen JE, Liu WH. Engineering Additive Manufacturing and Molding Techniques to Create Lifelike Willis' Circle Simulators with Aneurysms for Training Neurosurgeons. Polymers (Basel) 2020; 12:polym12122901. [PMID: 33287397 PMCID: PMC7761873 DOI: 10.3390/polym12122901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022] Open
Abstract
Neurosurgeons require considerable expertise and practical experience in dealing with the critical situations commonly encountered during difficult surgeries; however, neurosurgical trainees seldom have the opportunity to develop these skills in the operating room. Therefore, physical simulators are used to give trainees the experience they require. In this study, we created a physical simulator to assist in training neurosurgeons in aneurysm clipping and the handling of emergency situations during surgery. Our combination of additive manufacturing with molding technology, elastic material casting, and ultrasonication-assisted dissolution made it possible to create a simulator that realistically mimics the brain stem, soft brain lobes, cerebral arteries, and a hollow transparent Circle of Willis, in which the thickness of vascular walls can be controlled and aneurysms can be fabricated in locations where they are likely to appear. The proposed fabrication process also made it possible to limit the error in overall vascular wall thickness to just 2–5%, while achieving a Young’s Modulus closely matching the characteristics of blood vessels (~5%). One neurosurgical trainee reported that the physical simulator helped to elucidate the overall process of aneurysm clipping and provided a realistic impression of the tactile feelings involved in this delicate operation. The trainee also experienced shock and dismay at the appearance of leakage, which could not immediately be arrested using the clip. Overall, these results demonstrate the efficacy of the proposed physical simulator in preparing trainees for the rigors involved in performing highly delicate neurological surgical operations.
Collapse
Affiliation(s)
- Pin-Chuan Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (P.-C.C.); (C.-H.C.); (Y.-C.C.)
- High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jang-Chun Lin
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Hsuan Chiang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (P.-C.C.); (C.-H.C.); (Y.-C.C.)
| | - Yi-Chin Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (P.-C.C.); (C.-H.C.); (Y.-C.C.)
| | - Jia-En Chen
- Medical 3D Printing Center, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan;
- Department of Biomedical Engineering, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
| | - Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87927177; Fax: +886-2-87927178
| |
Collapse
|
6
|
Lei XX, Lu H, Lu L, Xu HQ, Zhou YG, Zou J. Improving the Thermal and Mechanical Properties of Poly(l-lactide) by Forming Nanocomposites with an in Situ Ring-Opening Intermediate of Poly(l-lactide) and Polyhedral Oligomeric Silsesquioxane. NANOMATERIALS 2019; 9:nano9050748. [PMID: 31096704 PMCID: PMC6566323 DOI: 10.3390/nano9050748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
In this study, a series of poly(l-lactide) and (3-amino)-propylheptaisobutyl cage silsesquioxane (PLLA-AMPOSS) intermediates were first fabricated using single-arm in situ solution polymerization of LLA monomers and AMPOSS nanoparticles with different contents, 0.02-1.00 mol%. Then, the PLLA-AMPOSS intermediate with 0.5 mol% AMPOSS was selected as a representative and investigated by nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). Afterwards, it was added into the pure PLLA with different mass fractions. Finally, the thermal behavior, crystallization kinetics, morphological characteristics, and mechanical properties of the obtained PLLA/PLLA-AMPOSS nanocomposites were carefully measured and investigated by differential scanning calorimetry (DSC), polarizing microscopy (POM), scanning electron microscopy (SEM), and tensile test. After comparing the PLLA-AMPOSS intermediate and PLLA/AMPOSS blend, the results show that the ring-open polymerization of PLLA-AMPOSS intermediate was successful. The results also show that the existence of PLLA-AMPOSS has a strong influence on the crystallization behavior of PLLA/PLLA-AMPOSS composites, which can be attributed to the heterogeneous nucleation effect of PLLA-AMPOSS. In addition, it was also found from the tensile test results that the addition of the PLLA-AMPOSS nanofiller improved the tensile strength and strain at break of PLLA/PLLA-AMPOSS nanocomposites. All of these results indicate the good nucleating effect of PLLA-AMPOSS and that the AMPOSS disperses well in the PLLA/PLLA-AMPOSS nanocomposites. A conclusion can be drawn that the selective nucleating agent and the combined method of in situ ring-opening polymerization and physical blending are feasible and effective.
Collapse
Affiliation(s)
- Xiu-Xiu Lei
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Hao Lu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Lei Lu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Hai-Qing Xu
- Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Ying-Guo Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Jun Zou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|