1
|
Chen TY, Hsiao YW, Baker-Fales M, Cameli F, Dimitrakellis P, Vlachos DG. Microflow chemistry and its electrification for sustainable chemical manufacturing. Chem Sci 2022; 13:10644-10685. [PMID: 36320706 PMCID: PMC9491096 DOI: 10.1039/d2sc01684b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 10/26/2023] Open
Abstract
Sustainability is vital in solving global societal problems. Still, it requires a holistic view by considering renewable energy and carbon sources, recycling waste streams, environmentally friendly resource extraction and handling, and green manufacturing. Flow chemistry at the microscale can enable continuous sustainable manufacturing by opening up new operating windows, precise residence time control, enhanced mixing and transport, improved yield and productivity, and inherent safety. Furthermore, integrating microfluidic systems with alternative energy sources, such as microwaves and plasmas, offers tremendous promise for electrifying and intensifying modular and distributed chemical processing. This review provides an overview of microflow chemistry, electrification, their integration toward sustainable manufacturing, and their application to biomass upgrade (a select number of other processes are also touched upon). Finally, we identify critical areas for future research, such as matching technology to the scale of the application, techno-economic analysis, and life cycle assessment.
Collapse
Affiliation(s)
- Tai-Ying Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Yung Wei Hsiao
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Montgomery Baker-Fales
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Fabio Cameli
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware 150 Academy Street Newark Delaware 19716 USA
- Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, Delaware Energy Institute (DEI), University of Delaware 221 Academy St. Newark Delaware 19716 USA
| |
Collapse
|
2
|
Jain A, De S, Barman P. Microwave-assisted synthesis and notable applications of Schiff-base and metal complexes: a comparative study. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04708-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Salih KSM. Modern Development in Copper‐ and Nickel‐Catalyzed Cross‐Coupling Reactions: Formation of Carbon‐Carbon and Carbon‐Heteroatom bonds under Microwave Irradiation Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kifah S. M. Salih
- Department of Chemistry and Earth Sciences College of Arts and Sciences Qatar University P.O. Box 2713 Doha (State of Qatar
| |
Collapse
|
4
|
Kowalczyk P, Koszelewski D, Gawdzik B, Samsonowicz-Górski J, Kramkowski K, Wypych A, Lizut R, Ostaszewski R. Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. MATERIALS 2022; 15:ma15051975. [PMID: 35269205 PMCID: PMC8912074 DOI: 10.3390/ma15051975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
An enzymatic route for phosphorous-carbon- bond formation is developed by discovering new promiscuous activity of lipase. This biocatalytic transformation of phosphorous-carbon- bond addition leads to biologically and pharmacologically relevant α-acyloxy phosphonates with methyl group in α-position. A series of target compounds were synthesized with yields ranging from 54% to 83% by enzymatic reaction with Candida cylindracea (CcL) lipase via Markovnikov addition of H-phosphites to vinyl esters. We carefully analyzed the best conditions for the given reaction such as the type of enzyme, temperature, and type of solvent. The developed protocol is applicable to a range of H-phosphites and vinyl esters significantly simplifying the preparation of synthetically challenging α-pivaloyloxy phosphonates. Further, the obtained compounds were validated as new potential antimicrobial drugs with characteristic E. coli bacterial strains and DNA modification recognized by the Fpg protein, N-methyl purine glycosylases as new substrates. The impact of the methyl group located in the α-position of the studied α-acyloxy phosphonates on the antimicrobial activity was demonstrated. The pivotal role of this group on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: (P.K.); (D.K.); Tel.: +48-22-765-33-01 (P.K.); +48-22-343-20-12 (D.K.)
| | - Dominik Koszelewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (J.S.-G.); (R.O.)
- Correspondence: (P.K.); (D.K.); Tel.: +48-22-765-33-01 (P.K.); +48-22-343-20-12 (D.K.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Jan Samsonowicz-Górski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (J.S.-G.); (R.O.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Rafał Lizut
- Institute of Mathematics, Informatics and Landscape Architecture, The John Paul II Catholic University of Lublin, ul. Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (J.S.-G.); (R.O.)
| |
Collapse
|
5
|
Microwave-assisted synthesis of benzo[b]phosphole oxide derivatives by oxidative addition of acetylenes and secondary phosphine oxides or alkyl phenyl-H-phosphinates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Martina K, Cravotto G, Varma RS. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. J Org Chem 2021; 86:13857-13872. [PMID: 34125541 PMCID: PMC8524417 DOI: 10.1021/acs.joc.1c00865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Microwave-assisted organic synthesis has been widely studied and deliberated, opening up some controversial issues as well. Nowadays, microwave chemistry is a mature technology that has been well demonstrated in many cases with numerous advantages in terms of the reaction rate and yield. The strategies toward scaling up find an ally in continuous-flow reactor technology comparing dielectric and conductive heating.
Collapse
Affiliation(s)
- Katia Martina
- Dipartimento
di Scienza e Tecnologia del Farmaco and Centre for Nanostructured
Interfaces and Surfaces (NIS), University of Turin, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Giancarlo Cravotto
- Dipartimento
di Scienza e Tecnologia del Farmaco and Centre for Nanostructured
Interfaces and Surfaces (NIS), University of Turin, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
7
|
Guzik P, Kulawik P, Zając M, Migdał W. Microwave applications in the food industry: an overview of recent developments. Crit Rev Food Sci Nutr 2021; 62:7989-8008. [PMID: 33970698 DOI: 10.1080/10408398.2021.1922871] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microwave radiation has the ability to heat a material with dielectric properties. Material absorbs microwave energy and then converts it into heat, which gives the possibility of a wide use of microwaves in many industry sectors or agricultural sciences. Microwaves are especially widely used in food industry. The main objective of this paper is to present an overview of recent development regarding microwave applications in food industry. Many techniques in food processing (pasteurization, sterilization, drying, thawing, blanching and stunning) are assisted by microwave energy. It should be mentioned also the use of microwaves in nutrients and nutraceuticals production. Waste generation is an integral part of food production. Microwaves have also application in wastes management. The results of experiments, factors affecting heating and their practical application have been discussed. Many cases have been compared with conventional process methods. The use of microwaves shows many advantages. The most important aspect is shortening the time of the thermal process (even by 50%) and reducing the costs of the operation. In addition, it allows to increase the efficiency of processes while maintaining high quality. The examples of microwave applications given in the article are environmentally- friendly because the conditions of thermal processing allow for reducing the use of solvents and the amount of sewage by decreasing the demand for water. It is anticipated that microwaves will become increasingly popular, with the development of new microwave technologies solving many problems in the future.
Collapse
Affiliation(s)
- Paulina Guzik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Marzena Zając
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| | - Władysław Migdał
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Poland in Cracow, Krakow
| |
Collapse
|
8
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
9
|
Affiliation(s)
- Romain Morodo
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| |
Collapse
|
10
|
Kiss NZ, Henyecz R, Keglevich G. Continuous Flow Esterification of a H-Phosphinic Acid, and Transesterification of H-phosphinates and H-Phosphonates under Microwave Conditions. Molecules 2020; 25:molecules25030719. [PMID: 32046016 PMCID: PMC7037008 DOI: 10.3390/molecules25030719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
The microwave (MW)-assisted direct esterification of phenyl-H-phosphinic acid, transesterification of the alkyl phenyl-H-phosphinates so obtained, and the similar reaction of dibenzyl phosphite (DBP) were investigated in detail, and the batch accomplishments were translated into a continuous flow operation that, after optimization of the parameters, such as temperature and flow rate, proved to be more productive. Alcoholysis of DBP is a two-step process involving an intermediate phosphite with two different alkoxy groups. The latter species are of synthetic interest, as precursors for optically active reagents.
Collapse
|