1
|
Yu M, Yang C, Chen M, Li Y, Kang K, Wang C, Niu J, Mu S, Zhang J, Liu C, Ma J. Multi-chamber membrane capacitive deionization coupled with peroxymonosulfate to achieve simultaneous removal of tetracycline and peroxymonosulfate reaction byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135036. [PMID: 38936188 DOI: 10.1016/j.jhazmat.2024.135036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Advanced oxidation technologies based on peroxymonosulfate (PMS) have been extensively applied for the degradation of antibiotics. However, the degradation process inevitably introduces SO42- and other sulfur-containing anions, these pollutants pose a huge threat to the water and soil environment. Addressing these concerns, this study introduced PMS oxidation into a multi-chamber membrane capacitive deionization (MC-MCDI) device to achieve simultaneous tetracycline (TC) degradation and removal of PMS reaction byproduct ions. The experimental results demonstrated that when the TC solution (40 mg L-1) was pre-adsorbed for 10 min, the voltage was 1.2 V and the concentration of PMS solution added was 4 mg mL-1, the removal efficiency of TC and ion can reach 77.4 % and 46.5 % respectively. Furthermore, the activation process of PMS in MC-MCDI/PMS system and the reactive oxygen (ROS) that mainly produce degradation were deeply investigated. Finally, liquid chromatography-mass spectrometry (LC-MS) was employed to identify intermediates of TC degradation, propose potential degradation pathways, and analyze the toxicities of the intermediates. In addition, in five cycles, the MC-MCDI/PMS system demonstrated excellent stability. This study provides an effective strategy for treating TC wastewater and a novel approach for simultaneous TC degradation and desalination.
Collapse
Affiliation(s)
- Minghao Yu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Chenxu Yang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Meng Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Yunke Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Kexin Kang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Cheng Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Situ Mu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Jing Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Junjun Ma
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Wang S, Gariepy Y, Adekunle A, Raghavan V. Effective and Economical 3D Carbon Sponge with Carbon Nanoparticles as Floating Air Cathode for Sustainable Electricity Production in Microbial Fuel Cells. Appl Biochem Biotechnol 2024; 196:1820-1839. [PMID: 37440114 DOI: 10.1007/s12010-023-04654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The effective and economical 3D floating air cathodes were fabricated by a simple dipping-drying method with carbon black (CB), ethanol, and PTFE solution. Pristine Type I polyurethane sponge (5 pores/mm) and Pristine Type II polyurethane sponge (3 pores/mm) were used as the support. The deposition of CB on the Pristine Type I and Pristine Type II materials was detected by scanning electron microscopy and Fourier transform infrared spectroscopy. The carbon loss rate test exhibited good CB adhesive stability on both floating air cathodes. Besides, Type I/CB floating air cathode displayed 3.7 times higher tensile strength, 10.58 times higher elongation at break, and 3.3 times lower cost than carbon felt. The electricity production ability of carbon cloth (CC) anode with carbon felt, Type I/CB, and Type II/CB cathode MFCs (CC-CF-MFC, CC-I-MFC, and CC-II-MFC) was evaluated. After 130 days, the CC-I-MFC showed a maximum power density (PD) of 92.58 mW/m3, which was 4.6 times higher than the CC-CF-MFC. Compared with Type II/CB, Type I/CB cathode improved the maximum power density by 160% due to the smaller pores, rougher surface, and higher surface wettability. Further, CC-I-MFC exhibited the best overall oxidation-reduction performance and chemical oxygen demand removal efficiency. Consequently, Type I/CB floating air cathode opens a new opportunity for scaling up simple, inexpensive, and high-performance MFCs for energy production.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Yvan Gariepy
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
3
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
4
|
Cui W, Fang J, Wan Y, Tao X, Guo L, Feng Q. Fast Degradation of Rhodamine B by In Situ H 2O 2 Fenton System with Co and N Co-Doped Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2606. [PMID: 37048900 PMCID: PMC10095408 DOI: 10.3390/ma16072606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In this study, an E-fenton oxidation system based on Co-N co-doped carbon nanotubes (Co-N-CNTs) was designed. The Co-N-CNTs system showed fast degradation efficiency and reusability for the degradation of rhodamine B (RhB). The XRD and SEM results showed that the Co-N co-doped carbon nanotubes with diameters ranging from 40 to 400 nm were successfully prepared. The E-Fenton degradation performance of Co-N-CNTs was investigated via CV, LSV and AC impedance spectroscopy. The yield of H2O2 could reach 80 mg/L/h within 60 min, and the optimal voltage and preparation temperature for H2O2 yield in this system was -0.7 V (vs. SCE) and 800 °C. For the target pollutant of RhB, the fast removal of RhB was obtained via the Co-N-CNTS/E-Fenton system (about 91% RhB degradation occurred during 60 min), and the •OH played a major role in the RhB degradation. When the Fe2+ concentrations increased from 0.3 to 0.4 mM, the RhB degradation efficiency decreased from 91% to about 87%. The valence state of Co in the Co-N-C catalyst drove a Co2+/Co3+ cycle, which ensured the catalyst had good E-Fenton degradation efficiency. This work provides new insight into the mechanism of an E-Fenton system with carbon-based catalysts for the efficient degradation of RhB.
Collapse
Affiliation(s)
- Wei Cui
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiahui Fang
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanyuan Wan
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xueyu Tao
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Litong Guo
- School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qiyan Feng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
5
|
Molla Nadali Pishnamaz H, Farimaniraad H, Baghdadi M, Aminzadeh Goharrizi B, Mahpishanian S. Application of nickel foam cathode modified by single-wall carbon nanotube in electro-Fenton process coupled with anodic oxidation: Enhancing organic pollutants removal. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Spherical ZVI/Mn-C Bimetallic Catalysts for Efficient Fenton-Like Reaction under Mild Conditions. Catalysts 2022. [DOI: 10.3390/catal12040444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The heterogeneous Fenton-like reaction has been receiving increasing attention for its inexpensiveness and high efficiency in water treatment. In this study, a novel strategy was proposed for preparing spherical ZVI/Mn-C bimetallic catalysts with a high activity for a Fenton-like reaction by using the ammonium alginate assisted sol–gel method coupled with a carbothermic reduction. The results showed that the obtained ZVI/Mn-C spheres had a uniform size, smooth surface and good sphericity, and the particle size of ZVI was limited to about 30 nm by the carbon layer. Among all catalysts, the ZVI/Mn-C-31 catalyst exhibited the highest phenol degradation efficiency in the Fenton-like process, and almost 100% phenol degradation efficiency was achieved under neutral pH at room temperature within 5 min. Moreover, the ZVI/Mn-C-31/H2O2 system showed a 100% degradation efficiency for removing a wide range of aromatic pollutants, including catechol, resorcinol and o-nitrophenol. Moreover, the radicals-scavenging experiment illustrated that the ·OH played a key factor in mineralizing the organic matters, and the ·O2− generated from the MnO-H2O2 system accelerated the conversion rate of ferric iron to ferrous iron. Due to the synergistic effects between ZVI and MnO, the ZVI/Mn-C-31 catalyst performed excellently in the Fenton-like reaction at an extended pH range.
Collapse
|
7
|
Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: Optimization of process parameters, electrical energy consumption and degradation pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Barhoum A, Favre T, Sayegh S, Tanos F, Coy E, Iatsunskyi I, Razzouk A, Cretin M, Bechelany M. 3D Self-Supported Nitrogen-Doped Carbon Nanofiber Electrodes Incorporated Co/CoO x Nanoparticles: Application to Dyes Degradation by Electro-Fenton-Based Process. NANOMATERIALS 2021; 11:nano11102686. [PMID: 34685127 PMCID: PMC8540561 DOI: 10.3390/nano11102686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
We developed free-standing nitrogen-doped carbon nanofiber (CNF) electrodes incorporating Co/CoOx nanoparticles (NPs) as a new cathode material for removing Acid Orange 7 (AO7; a dye for wool) from wastewater by the heterogeneous electro-Fenton reaction. We produced the free-standing N-doped CNF electrodes by electrospinning a polyacrylonitrile (PAN) and cobalt acetate solution followed by thermal carbonation of the cobalt acetate/PAN nanofibers under a nitrogen atmosphere. We then investigated electro-Fenton-based removal of AO7 from wastewater with the free-standing N-doped-CNFs-Co/CoOx electrodes, in the presence or not of Fe2+ ions as a co-catalyst. The electrochemical analysis showed the high stability of the prepared N-doped-CNF-Co/CoOx electrodes in electrochemical oxidation experiments with excellent degradation of AO7 (20 mM) at acidic to near neutral pH values (3 and 6). Electro-Fenton oxidation at 10 mA/cm2 direct current for 40 min using the N-doped-CNF-Co/CoOx electrodes loaded with 25 wt% of Co/CoOx NPs led to complete AO7 solution decolorization with total organic carbon (TOC) removal values of 92.4% at pH 3 and 93.3% at pH 6. The newly developed N-doped-CNF-Co/CoOx electrodes are an effective alternative technique for wastewater pre-treatment before the biological treatment.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
- Correspondence: (A.B.); (M.B.)
| | - Therese Favre
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Fida Tanos
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland; (E.C.); (I.I.)
| | - Antonio Razzouk
- Laboratoire d’Analyses Chimiques, Faculty of Sciences, LAC—Lebanese University, Jdeidet 90656, Lebanon;
| | - Marc Cretin
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, Université Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugène Bataillon, 34095 Montpellier, France; (T.F.); (S.S.); (F.T.); (M.C.)
- Correspondence: (A.B.); (M.B.)
| |
Collapse
|
9
|
Su H, Chu Y, Miao B. Degreasing cotton used as pore-creating agent to prepare hydrophobic and porous carbon cathode for the electro-Fenton system: enhanced H 2O 2 generation and RhB degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12965-z. [PMID: 33641103 DOI: 10.1007/s11356-021-12965-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
A porous carbon cathode was prepared using graphite, polytetrafluoroethylene (PTFE), and degreasing cotton (DC) through sintering treatment. The carbonization of DC by heat treatment played an ideal role in pore-creating, which weakened the mass transfer resistance of O2, and as a result, the adoption of degreasing cotton significantly improved the performance of H2O2 electro-generation. The optimized cathode was able to generate 567 mg L-1 H2O2 with a current efficiency (CE) of 86.7% by the electrochemical reaction of 60 min in a divided reactor. Furthermore, the degradation of rhodamine B (RhB) was carried out by an electro-Fenton system using the optimal cathode selected. The developed electro-Fenton system exhibited an excellent RhB degradation performance. The RhB solution of 50 mg L-1 was decolorized completely by the treatment of 10 min. Moreover, the degradation of 50~90 mg L-1 RhB solution presented over 90% TOC removal by the treatment of 120 min, indicating the ideal mineralization of organic pollutants. In addition, it was found that •OH was the major oxidizing specie responsible for the organics degradation. Finally, the possible pathway of RhB degradation in the electro-Fenton system was proposed by GC-MS analysis. The adoption of natural fibers for pore-creating provides an innovative and low-cost method to prepare porous cathode, which may promote the application of electro-Fenton oxidation in wastewater treatment.
Collapse
Affiliation(s)
- Hongzhao Su
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Yanyang Chu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| | - Baoyu Miao
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
10
|
Yu T, Breslin CB. Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton Process. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2254. [PMID: 32422892 PMCID: PMC7288041 DOI: 10.3390/ma13102254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
In recent years, graphene-based materials have been identified as an emerging and promising new material in electro-Fenton, with the potential to form highly efficient metal-free catalysts that can be employed in the removal of contaminants from water, conserving precious water resources. In this review, the recent applications of graphene-based materials in electro-Fenton are described and discussed. Initially, homogenous and heterogenous electro-Fenton methods are briefly introduced, highlighting the importance of the generation of H2O2 from the two-electron reduction of dissolved oxygen and its catalysed decomposition to produce reactive and oxidising hydroxy radicals. Next, the promising applications of graphene-based electrodes in promoting this two-electron oxygen reduction reaction are considered and this is followed by an account of the various graphene-based materials that have been used successfully to give highly efficient graphene-based cathodes in electro-Fenton. In particular, graphene-based composites that have been combined with other carbonaceous materials, doped with nitrogen, formed as highly porous aerogels, three-dimensional materials and porous gas diffusion electrodes, used as supports for iron oxides and functionalised with ferrocene and employed in the more effective heterogeneous electro-Fenton, are all reviewed. It is perfectly clear that graphene-based materials have the potential to degrade and mineralise dyes, pharmaceutical compounds, antibiotics, phenolic compounds and show tremendous potential in electro-Fenton and other advanced oxidation processes.
Collapse
Affiliation(s)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland;
| |
Collapse
|
11
|
Fdez-Sanromán A, Acevedo-García V, Pazos M, Sanromán MÁ, Rosales E. Iron-doped cathodes for electro-Fenton implementation: Application for pymetrozine degradation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135768] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|