1
|
Ortega MA, De Leon-Oliva D, Liviu Boaru D, Fraile-Martinez O, García-Montero C, Casanova C, García-Honduvilla N, Bujan J, Saez MA, Álvarez-Mon M, Velazquez De Castro A, López-González L, Acero J, Barrena-Blázquez S, Diaz R. Advances in 3D bioprinting to enhance translational applications in bone tissue engineering and regenerative medicine. Histol Histopathol 2025; 40:147-156. [PMID: 38832442 DOI: 10.14670/hh-18-763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Bone defects are due to trauma, infections, tumors, or aging, including bone fractures, bone metastases, osteoporosis, or osteoarthritis. The global burden of these demands research into innovative strategies that overcome the limitations of conventional autografts. In this sense, the development of three-dimensional (3D) bioprinting has emerged as a promising approach in the field of tissue engineering and regenerative medicine (TERM) for the on-demand generation and transplantation of tissues and organs, including bone. It combines biological materials and living cells, which are precisely positioned layer by layer. Despite obtaining some promising results, 3D bioprinting of bone tissue still faces several challenges, such as generating an effective vascular network to increase tissue viability. In this review, we aim to collect the main knowledge on methods and techniques of 3D bioprinting. Then, we will review the main biomaterials, their composition, and the rationale for their application in 3D bioprinting for the TERM of bone.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Carlos Casanova
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital Principe de Asturias, CIBEREHD, Alcala de Henares, Spain
| | - Amador Velazquez De Castro
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julio Acero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Department of Oral and Maxillofacial Surgery, Ramon y Cajal University Hospital, University of Alcalá, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, CI-BEREHD, University of Alcalá, Alcala de Henares, Spain.
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Surgery Service, University Hospital Principe de Asturias, Alcala de Henares, Spain
| |
Collapse
|
2
|
Zheng F, Yang X, Li J, Tian Z, Xiao B, Yi S, Duan L. Coordination with zirconium: A facile approach to improve the mechanical properties and thermostability of gelatin hydrogel. Int J Biol Macromol 2022; 205:595-603. [PMID: 35217081 DOI: 10.1016/j.ijbiomac.2022.02.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
The poor mechanical property and thermostability restricted applications of gelatin hydrogel. Herein, a facile and inexpensive approach of immerging cooling induced gelatin hydrogels into Zr(SO4)2 dilute solution was applied to overcome these shortages. After this treatment, the micropores in hydrogel decreased to tens of microns while the water content slightly decreased. XPS results revealed that the coordination bonds formed between amino or carboxyl groups of gelatins and Zr4+. After immerging in 0.06 M Zr4+ solution, mechanical tests showed that the elastic modulus, compressive modulus and compressive strength of hydrogel were about 400, 1192 and 476 kPa, respectively, which were approximate 100, 11 and 5 times larger than those of pure gelatin. The DSC data indicated that the thermoreversible temperature of triple helix structure in gelatin was improved from about 30 °C to 55 °C. More importantly, the rheological temperature sweep test revealed that hydrogels with 0.06 M Zr4+ treatment can maintain the hydrogel state without melting even at 80 °C. CCK-8 tests and Calcein-AM/PI double-stain experiments demonstrated Zr4+ coordination was non-cytotoxic. These promising data indicated this nontoxic method was efficient and had potential to fabricate gelatin related materials for further application.
Collapse
Affiliation(s)
- Fan Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|