1
|
Doğan ŞD, Özcan E, Çetinkaya Y, Han Mİ, Şahin O, Bogojevic SS, Nikodinovic-Runic J, Gündüz MG. Linking quinoline ring to 5-nitrofuran moiety via sulfonyl hydrazone bridge: Synthesis, structural characterization, DFT studies, and evaluation of antibacterial and antifungal activity. J Mol Struct 2023; 1292:136155. [DOI: 10.1016/j.molstruc.2023.136155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Popiołek Ł. The application of hydrazones and hydrazide-hydrazones in the synthesis of bioactive azetidin-2-one derivatives: A mini review. Biomed Pharmacother 2023; 163:114853. [PMID: 37178574 DOI: 10.1016/j.biopha.2023.114853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The hydrazones and hydrazide-hydrazones beside possessing crucial bioactivity can serve as useful intermediates in the synthesis of heterocyclic systems like 1,3-benzothiazin-4-one, 1,3-thiazolidin-4-one, azetidin-2-one and 1,3,4-oxadiazole derivatives. The azetidin-2-one derivatives show mainly antibacterial, antitubercular and antifungal activity as well as anti-inflammatory, antioxidant, anticonvulsant and antidepressant activity and activity against Parkinson's disease. This review is focused on the literature reports which consider the synthesis and biological properties of azetidin-2-one derivatives.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
| |
Collapse
|
3
|
Aydin M, Ozturk A, Duran T, Ozmen UO, Sumlu E, Ayan EB, Korucu EN. In vitro antifungal and antibiofilm activities of novel sulfonyl hydrazone derivatives against Candida spp. J Mycol Med 2023; 33:101327. [PMID: 36272382 DOI: 10.1016/j.mycmed.2022.101327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to investigate the antifungal and antibiofilm activity of the new sulfonyl hydrazones compound derived from sulphonamides. METHODS In this study, new sulfonyl hydrazone series were synthesized via a green chemistry method. The structures of the synthesized compounds were characterized by elemental analyses and spectroscopic methods. The antifungal activities of the Anaf compounds against Candida strains under planktonic conditions were tested. The biofilm-forming ability of Candida strains was determined and the inhibitory effects of Anaf compounds on Candida biofilms compared with fluconazole were measured by MTT assay. Expression analysis of biofilm-related genes was investigated with qRT-PCR. The statistical analysis was performed using a one-way ANOVA test. CANDIDA: strains was determined and the inhibitory effects of Anaf compounds on Candida biofilms compared with fluconazole were measured by MTT assay. Expression analysis of biofilm-related genes was investigated with qRT-PCR. The statistical analysis was performed using a one-way ANOVA test. RESULTS A total of 16 (45.7%) out of 35 Candida isolates were determined as strong biofilm producers in this study. C. albicans was the most biofilm producer, followed by C. krusei and C. lusitaniae. The Anaf compounds had a broad spectrum of activity with MIC values ranging from 4 μg/ml to 64 μg/ml. Our data indicated that the Anaf compound had a significant effect on inhibiting biofilm formation in both fluconazole-susceptible and -resistant strains. The expression levels of hypha-specific genes als3, hwp1, ece1 and sap5 were downregulated by Anaf compounds. CONCLUSIONS Our study revealed that the Anaf compounds had antifungal activity and inhibited fungal biofilms, which may be related to the suppression of C. albicans adherence and hyphal formation. These results suggest that Anaf compounds may have therapeutic potential for the treatment and prevention of biofilm-associated Candida infections.
Collapse
Affiliation(s)
- Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, KTO Karatay University, Konya, Turkey.
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Tugce Duran
- Department of Medical Genetics, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | | | - Esra Sumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, Konya, Turkey
| | - Esra Bilen Ayan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
4
|
Guedes JS, Carneiro TR, Pinheiro PDSM, Fraga CA, Sant′Anna CM, Barreiro EJ, Lima LM. Methyl Effect on the Metabolism, Chemical Stability, and Permeability Profile of Bioactive N-Sulfonylhydrazones. ACS OMEGA 2022; 7:38752-38765. [PMID: 36340078 PMCID: PMC9631887 DOI: 10.1021/acsomega.2c04368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood-brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis.
Collapse
Affiliation(s)
- Jéssica
de Siqueira Guedes
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Teiliane Rodrigues Carneiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
| | - Pedro de Sena Murteira Pinheiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
| | - Carlos Alberto
Manssour Fraga
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Carlos Mauricio
R. Sant′Anna
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica 23970-000, Brazil
| | - Eliezer J. Barreiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Lídia Moreira Lima
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| |
Collapse
|