1
|
Ubaid M, Saini CS. Enzymatic hydrolysis of grape seed protein: In vitro digestibility, functional, and structural insights as effected by enzyme concentration and enzymolysis time. Int J Biol Macromol 2025; 309:143077. [PMID: 40246122 DOI: 10.1016/j.ijbiomac.2025.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
This study investigated the production of grape seed protein hydrolysate by studying the influence of various enzymatic hydrolysis conditions on grape seed proteins. The hydrolysate was characterized in terms of functional, structural, antioxidant properties and in vitro digestibility. The findings revealed that enzymatic hydrolysis led to structural modifications, which enhanced the functional properties of grape seed proteins. Enzymatic hydrolysis of grape seed protein with enzyme alcalase concentration @ 4 % (v/v) and 6 h resulted in the highest degree of hydrolysis, highest antioxidant activity, emulsifying capacity and solubility, and the lowest turbidity value. Enzymatic hydrolysis treatment reduced particle size, and turbidity, while improving DPPH radical scavenging activity, solubility. FTIR analysis indicated structural and conformational changes in the protein. X-ray diffraction results demonstrated reduced crystallinity in all the grape seed protein hydrolysates. The conformational as well as structural alterations contributed to improved antioxidant properties, and in-vitro digestibility of grape seed protein hydrolysate.
Collapse
Affiliation(s)
- M Ubaid
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, Punjab, India
| | - Charanjiv Singh Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Sangrur, Punjab, India.
| |
Collapse
|
2
|
Li S, Zhang X, Wang J, Lu J, Li M, Zhang M, Panichayupakaranant P, Chen H. Double-crosslinked hydrogels and hydrogel beads formed by garlic protein hydrolysates for bioactive encapsulation and gastrointestinal delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2643-2654. [PMID: 39548671 DOI: 10.1002/jsfa.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Garlic protein is one of the main components of garlic. It has several beneficial characteristics. This study aimed to characterize a double crosslinked hydrogel formed with alginate, calcium ions (Ca2+), and garlic protein hydrolysates (GPH), and to develop hydrogel beads for targeted delivery of bioactive constituents to the gastrointestinal tract. RESULTS The results indicated that the degree of GPH hydrolysis was approximately 3% following trypsin treatment. The inner structure of the double crosslinked hydrogel showed a honeycomb pattern, with solid-like gel rheology and improved texture properties at a 4% (w/v) GPH concentration. The GPH-based hydrogel beads demonstrated pH sensitivity, swelling in near-neutral and alkaline environments, and the encapsulated paclitaxel (PTX) exhibited an amorphous phase with preferential release in intestinal conditions. The GPH group also achieved greater drug encapsulation efficiency than a soy protein hydrolysate (SPH) group, and proteomic analysis suggested that lower molecular weight and peptide charge favored the formation of peptide-integrated double crosslinking hydrogels. CONCLUSION This work indicated that GPH was helpful and could inspire the development of drug delivery systems involving GPH with the required mechanical strength and target-release properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
- College of Basic Science, Tianjin Agricultural University, Tianjin, P. R. China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, P. R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, , Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
3
|
Rownaghi M, Niakousari M. Sour orange ( Citrus aurantium) seed, a rich source of protein isolate and hydrolysate - A thorough investigation. Heliyon 2024; 10:e32503. [PMID: 38952368 PMCID: PMC11215272 DOI: 10.1016/j.heliyon.2024.e32503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Sour orange (Citrus aurantium) seeds are typically discarded by juice processors as waste. This study aimed to extract protein isolates, produce hydrolysates from de-oiled sour orange seeds (SOS), and characterize their physicochemical properties. Previous studies have described methods to obtain protein isolates and hydrolysates from agricultural residues. However, there is limited data on the SOS. This research characterized protein isolates and hydrolysates from SOS, emphasizing yield, purity, and amino acid composition. Protein isolates were extracted using borate saline buffer, saline, and distilled water. Enzymatically hydrolysis was conducted using Protamex® (a commercial protease) at concentrations ranging from 0.2 to 5 g enzyme/100g protein isolate. Differential scanning calorimetry, electrophoresis, and FT-IR spectroscopy were utilized to characterize the isolates and hydrolysates. Data showed that using 5 % saline resulted in protein extraction with a yield and purity of 30 and 86 %, respectively. DSC analysis revealed that the denaturation temperature of the protein isolate was 68 °C, while the hydrolysates exhibited structural instability, as indicated by a decrease in enthalpy change compared to the isolate. The protein isolate had a 76° contact angle. The amino acid profile showed a significant presence of glutamic acid (130.530 mg/g) and arginine (70.210 mg/g). Electrophoresis analysis exhibited four major bands of the protein. The bands' intensity decreased, and new bands appeared after hydrolysis. The enzyme hydrolysis was confirmed using the O-phthaldialdehyde method and FTIR. Findings revealed that based on the free amine group quantity, the hydrolysate obtained using 5 g enzyme/100g protein isolate was 14.220 ± 0.299 μmol/mg protein. The study concluded that sour orange seeds are a good source of protein, with protein isolates and hydrolysates exhibiting desirable characteristics. More research needs to be conducted to acquire further information about their functional properties and potential applications.
Collapse
Affiliation(s)
- Marzieh Rownaghi
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science & Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Pillai AT, Morya S, Kasankala LM. Emerging Trends in Bioavailability and Pharma-Nutraceutical Potential of Whey Bioactives. J Nutr Metab 2024; 2024:8455666. [PMID: 38633607 PMCID: PMC11023716 DOI: 10.1155/2024/8455666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Whey, a component of milk and a useful by-product of the dairy industry's casein and cheese-making, has been used for generations to augment animal feed. It contains a range of proteins, including α-lactalbumin, β-lactoglobulin, bovine serum albumin, heavy and light chain immunoglobulins, lactoferrin, glycomacropeptide, and lactoperoxidase. Whey proteins exhibit great potential as biopolymers for creating bioactive delivery systems owing to their distinct health-enhancing characteristics and the presence of numerous amino acid groups within their structures. Whey has considerable factors such as antitumor, anti-inflammatory, antihypertensive, hypolipidemic, antiviral, and antibacterial properties in addition to chelating. The global market of whey protein stood at USD 5.33 billion in 2021, with a projected compound annual growth rate of 10.48% spanning the interval from 2022 to 2030. The escalating demand for whey protein is intrinsically linked to the amplifying consciousness surrounding healthy lifestyles. Notably, protein supplements are recurrently endorsed by fitness and sports establishments, thereby accentuating the focal point of customers toward whey protein. This review focuses on nutritional composition, whey bioactives, and their bioavailability with potential health benefits.
Collapse
Affiliation(s)
- Adhithyan T. Pillai
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sonia Morya
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | | |
Collapse
|
5
|
Lopes PM, Fechete R, Minteuan F, Mare L, Moldovan D, Moldovan M, Cuc S, Saroși CL, Popescu V. The Influence of Lyophilization Pretreatment and Whey Content on Whey and Gelatin-Based Hydrogels. Gels 2024; 10:229. [PMID: 38667648 PMCID: PMC11048941 DOI: 10.3390/gels10040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Whey and gelatin, natural polymers within the protein category, find widespread use in hydrogel formulations applied across the food, medical, and pharmaceutical industries. This study presents new characteristics of hydrogels based on whey, gelatin, and copper sulfate as a consequence of the additional steps in the preparation method, specifically refrigeration and freezing storage followed by lyophilization. The water state in hydrogels prior to lyophilization impacts the morphological appearance, with refrigerated hydrogels exhibiting a more regular and dense pore distribution, as shown by the Scanning Electron Microscopy (SEM) images. This observation aligns with the higher mobility of polymer chains indicated by T2 distributions in 1H nuclear magnetic resonance (RMN) relaxometry measurements. Changes in the intensity and amide-specific wavenumbers of the FTIR spectra of whey and gelatin proteins are evident in the Fourier Transformed Infrared (FTIR) spectra of crosslinked and frozen hydrogels before lyophilization. Moreover, the reinforcing effect in the hydrogel matrix, noted in mechanical tests, is attributed to increased polymer chain content and copper sulfate crosslinking.
Collapse
Affiliation(s)
- Pompilia Mioara Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
- “SAMUS” Special Vocational School, 17 Ialomiței Street, 400574 Cluj-Napoca, Romania
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Felicia Minteuan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Liviu Mare
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Dumitrița Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| | - Marioara Moldovan
- Polymeric Composite Laboratory, Institute of Chemistry “Raluca Ripan”, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.M.); (S.C.); (C.L.S.)
| | - Stanca Cuc
- Polymeric Composite Laboratory, Institute of Chemistry “Raluca Ripan”, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.M.); (S.C.); (C.L.S.)
| | - Codruța Liana Saroși
- Polymeric Composite Laboratory, Institute of Chemistry “Raluca Ripan”, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.M.); (S.C.); (C.L.S.)
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (P.M.L.); (R.F.); (F.M.); (L.M.); (D.M.)
| |
Collapse
|
6
|
Clímaco GN, Fasolin LH. Effect of the gelling mechanism on the physical properties of bigels based on whey protein isolate. Food Res Int 2024; 176:113784. [PMID: 38163701 DOI: 10.1016/j.foodres.2023.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The effect of the cold-set and heat-set gelling mechanism of whey protein isolate on bigel production was assessed. For this purpose, hydrogel phase was produced with whey protein isolated (10 % w/v) and for oleogel sunflower oil and glycerol monostearate (7.5 % w/v) were used. Bigels were produced by hot emulsification of different hydrogel:oleogel ratios (from 90:10 up to 10:90). For cold-set bigels (CSB) NaCl (200 mM) was added to the aqueous phase prior to the emulsification and the emulsion was cooled to promote the 3D network formation. On the other hand, heat-set bigels (HSB) were produced by heating the emulsion (80 °C, 60 min). Bigels were evaluated through microscopy, FTIR, thermal and texture analyzes. Results showed that depending on the hydrogel:oleogel ratio and gelling mechanism different structures organization were obtained. CSB were more organized, showing that the rate of gelation was the mechanism responsible for the structure. However, for HSB the heat treatment destabilized the emulsion and disorganized structures were observed for high oleogel content. FTIR corroborates the visual observation and showed that the arrangement was purely physical. In addition, the structural arrangement led to different mechanical properties. In general, HSB produced gels with rubber-like behavior, higher elasticity modulus and the presence of a breaking point. In contrast, CSB behaves as squeezing gel, with no breaking point and lower values of elasticity modulus. Moreover, for O/W bigels the dispersed oleogel particles disrupted the WPI network decreasing the gel strength in comparison to pure hydrogels. However, for systems where oleogel was the continuous phase, the gel strength was recovered due to the metastable and dynamic character of these systems. Thus, results showed that the gelling mechanism of the protein exerted an effect on the physical properties of bigels. In addition, the mechanical properties also can be modulated according to the bigel composition, allowing its application in products with different sensorial characteristics.
Collapse
Affiliation(s)
- Gabrielli Nunes Clímaco
- Universidade Estadual de Campinas (Unicamp), Faculade de Engenharia de Alimentos, Departamento de Engenharia e Tecnologia de Alimentos, Campinas - SP, CEP 13083-862, Brazil
| | - Luiz Henrique Fasolin
- Universidade Estadual de Campinas (Unicamp), Faculade de Engenharia de Alimentos, Departamento de Engenharia e Tecnologia de Alimentos, Campinas - SP, CEP 13083-862, Brazil.
| |
Collapse
|
7
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Murcia ÁB, Torrestina-Sánchez B, Fernandez-Lafuente R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int J Biol Macromol 2023; 253:127244. [PMID: 37806416 DOI: 10.1016/j.ijbiomac.2023.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Bromelains are cysteine peptidases with endopeptidase action (a subfamily of papains), obtained from different parts of vegetable belonging to the Bromeliaceae family. They have some intrinsic medical activity, but this review is focused on their application (individually or mixed with other proteases) to produce bioactive peptides. When compared to other proteases, perhaps due to the fact that they are commercialized as an extract containing several proteases, the hydrolysates produced by this enzyme tends to have higher bioactivities than other common proteases. The peptides and the intensity of their final properties depend on the substrate protein and reaction conditions, being the degree of hydrolysis a determining parameter (but not always positive or negative). The produced peptides may have diverse activities such as antioxidant, antitumoral, antihypertensive or antimicrobial ones, among others or they may be utilized to improve the organoleptic properties of foods and feeds. Evolution of the use of this enzyme in this application is proposed to be based on a more intense direct application of Bromeliaceae extract, without the cost associated to enzyme purification, and the use of immobilized biocatalysts of the enzyme by simplifying the enzyme recovery and reuse, and also making the sequential hydrolysis using diverse proteases possible.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | | | |
Collapse
|
8
|
Qian S, Lan T, Zhao X, Song T, Cao Y, Zhang H, Liu J. Mechanism of ultrasonic combined with different fields on protein complex system and its effect on its functional characteristics and application: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106532. [PMID: 37517277 PMCID: PMC10407543 DOI: 10.1016/j.ultsonch.2023.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
In recent years, new food processing technologies (such as ultrasound, high-pressure homogenization, and pulsed electric fields) have gradually appeared in the public 's field of vision. These technologies have made outstanding contributions to changing the structure and function of protein complexes. As a relatively mature physical field, ultrasound has been widely used in food-related fields. However, with the gradual deepening of related research, it is found that the combination of different fields often makes some characteristics of the product better than the product under the action of a single field, which will not only lead to a broader application prospect of the product, but also make the product a better solution in some special fields. There are usually synergistic and antagonistic effects when multiple fields are combined, and these effects will also gradually enlarge the interaction between different components of the protein complex system. In this paper, while explaining the mechanism of ultrasonic combined with other fields affecting the steric hindrance and shielding site of protein complex system, we will further explain the effect of this effect on the function and application of protein complex system.
Collapse
Affiliation(s)
- Sheng Qian
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xu Zhao
- Jilin Province Institute of Product Quality Supervision and Inspection, Changchun 130022, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Yong Cao
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Purcea Lopes PM, Moldovan D, Fechete R, Mare L, Barbu-Tudoran L, Sechel N, Popescu V. Characterization of a Graphene Oxide-Reinforced Whey Hydrogel as an Eco-Friendly Absorbent for Food Packaging. Gels 2023; 9:gels9040298. [PMID: 37102911 PMCID: PMC10138084 DOI: 10.3390/gels9040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
This study presents a structural analysis of a whey and gelatin-based hydrogel reinforced with graphene oxide (GO) by ultraviolet and visible (UV-VIS) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results revealed barrier properties in the UV range for the reference sample (containing no graphene oxide) and the samples with minimal GO content of 0.66×10−3% and 3.33×10−3%, respectively, in the UV-VIS and near-IR range; for the samples with higher GO content, this was 6.67×10−3% and 33.33×10−3% as an effect of the introduction of GO into the hydrogel composite. The changes in the position of diffraction angles 2θ from the X-ray diffraction patterns of GO-reinforced hydrogels indicated a decrease in the distances between the turns of the protein helix structure due to the GO cross-linking effect. Transmission electron spectroscopy (TEM) was used for GO, whilst scanning electron microscopy (SEM) was used for the composite characterization. A novel technique for investigating the swelling rate was presented by performing electrical conductivity measurements, the results of which led to the identification of a potential hydrogel with sensor properties.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Dumitrita Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Liviu Mare
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University of Cluj-Napoca, 1 M. Kogalniceanu Street, 400347 Cluj-Napoca, Romania
| | - Niculina Sechel
- Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Bora AFM, Kouame KJEP, Li X, Liu L, Sun Y, Ma Q, Liu Y. Development, characterization and probiotic encapsulating ability of novel Momordica charantia bioactive polysaccharides/whey protein isolate composite gels. Int J Biol Macromol 2023; 225:454-466. [PMID: 36410535 DOI: 10.1016/j.ijbiomac.2022.11.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
In this study, a polysaccharide (MP1) with a molecular weight of 38 kDa was isolated from Momordica charantia which contains arabinose, galactose, xylose, and rhamnose. (MP1) was used to formulate composite gels with Whey Protein Isolate (WPI) that were characterized for their functional properties, microstructure, thermal resistance, probiotic encapsulating ability, and potential toward metabolic syndrome (MS). Results showed that the highest complex index was obtained at MP concentration of 2 %. MP-WPIs demonstrated superior (p < 0.05) water holding capacity and emulsifying properties than WPI gels. MP-WPIs also had higher (p < 0.05) thermal stability via TGA and DSC analysis. MP-WPI morphology was observed via SEM whereas protein structure as affected by MP concentration was studied using CLSM. Also, FTIR revealed that MP and WPI bonded mainly through electrostatic, hydrophobic and hydrogen interactions. More, MP-WPIs successfully enhanced probiotic Lactobacillus acidophilus (LA) survival upon freeze-drying with high encapsulation efficiency (98 %) and improved storage stability. MP-WPIs improved LA survival upon digestion suggesting a potential prebiotic activity. Finally, synbiotic formulation LA-MP-WPIs exhibited effective biological activity against MS. Therefore, MP-WPIs is a propitious strategy for effective probiotic gastrointestinal delivery with potential toward MS.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yue Sun
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
11
|
Lopes PMP, Moldovan D, Fechete R, Prodan D, Pop CR, Rotar AM, Popescu V. Swelling and Antimicrobial Activity Characterization of a GO-Reinforced Gelatin-Whey Hydrogel. Gels 2022; 9:18. [PMID: 36661786 PMCID: PMC9857670 DOI: 10.3390/gels9010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Whey-based hydrogel samples with increasing concentrations of graphene oxide (GO) were studied, against a control sample (M), for swelling behavior in light of nuclear magnetic resonance (NMR) and mathematical models of the diffusion process and for antibacterial activity. Graphene oxide (GO) is an optimal filler for whey-based hydrogels, giving them improved mechanical and swelling properties at low concentrations. Crosslinking induces a certain stiffness of the hydrogels, which is why only the first part of the swelling process (<60%) follows the first-order model, while during the whole time interval, the swelling process follows the second-order diffusion model. The NMR relaxometry results are consistent with the swelling behavior of GO-reinforced whey−gelatin composite hydrogels, showing that higher GO concentrations induce a higher degree of cross-linking and, therefore, lower swelling capacity. Only hydrogel samples with higher GO concentrations demonstrated antibacterial activity.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Dumitriţa Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| | - Doina Prodan
- Composite Materials Department, Chemistry Research Institute “Raluca Ripan”, “Babes-Bolyai” University, 30 Fantanele Str., 400294 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 64 Calea Floresti Str., 400509 Cluj-Napoca, Romania
| | - Ancuța M. Rotar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 64 Calea Floresti Str., 400509 Cluj-Napoca, Romania
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Kheroufi A, Brassesco ME, Campos DA, Mouzai A, Boughellouta H, Pintado ME. Whey protein-derived peptides: The impact of chicken pepsin hydrolysis upon whey proteins concentrate on their biological and technological properties. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Kowalczyk D, Szymanowska U, Skrzypek T, Basiura-Cembala M, Bartkowiak A, Łupina K. A Comprehensive Study on Gelatin- and Whey Protein Isolate-Based Edible Films as Carriers of Fireweed (Epilobium angustifolium L.) Extract. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractGelatin (GEL) and whey protein isolate (WPI) are often taken into account as carriers of phytoantioxidants for developing active packaging. The materials obtained, however, have not yet been systematically compared to demonstrate their potential benefits and drawbacks. Fireweed extract (FE) is a rich source of polyphenols with high antioxidant activity. Therefore, in this study, the structural, physicochemical, and antiradical properties of GEL and WPI films incorporated with freeze-dried fireweed extract (FE; 0, 0.0125, 0.025, 0.05%) were simultaneously evaluated. As verified by X-ray diffraction, the GEL-based films were more crystalline and, consequently, mechanically stronger (~ 9–11 vs. ~ 6 MPa) and less permeable to water vapor than the WPI films (44.95–52.02 vs. 61.47–70.49 g mm m−2 day−1 kPa−1). Furthermore, GEL offered a bit more transparent, less yellow, and more stretchable films (~ 50–59% vs. ~ 26%). In turn, the WPI films had superior UV-protective potential. The higher FE concentration yielded more yellow films with improved UV-blocking ability. The FE (0.05%) made the GEL cryogel denser. Based on the half-time reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (tABTS50%), the 0.025, and 0.05% FE-supplemented WPI films exhibited ~ 1.6 and ~ 1.9 times better antiradical potential than the GEL counterparts. This result implies that the WPI-based films, being more soluble (35.12–36.74 vs. 31.51–33.21%) and less swellable (192.61–205.88 vs. 1056.93–2282.47%), ensured faster release of FE into aqueous medium. The slower building up of the antiradical activity of the FE-supplemented GEL films suggests that GEL could be more useful in the development of slow/less migratory active packaging systems for high moisture food.
Collapse
|
14
|
Purcea Lopes PM, Moldovan D, Moldovan M, Carpa R, Saroşi C, Păşcuţă P, Mazilu Moldovan A, Fechete R, Popescu V. New Composite Hydrogel Based on Whey and Gelatin Crosslinked with Copper Sulphate. MATERIALS 2022; 15:ma15072611. [PMID: 35407945 PMCID: PMC9000359 DOI: 10.3390/ma15072611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
By-products from the meat and dairy industries are important sources of high biological value proteins. This paper explores possibilities for improving the swelling and integrity of a cross-linked whey and gelatin hydrogel with different amounts of CuSO4 × 5H2O. Overall, swelling tests demonstrate that cross-linked samples show a better hydration capacity and stability in the hydration medium, but different copper concentrations lead to different swelling behavior. At concentrations smaller than 0.39%, the sample lasts for 75 h in a water environment before beginning to disintegrate. At a concentration of copper sulphate higher than 0.55%, the stability of the sample increased substantially. The swelling kinetics has been investigated. The diffusion constant values increased with the increase in copper concentration, but, at the highest concentration of copper (0.86%), its value has decreased. Spectroscopy analyses such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-VIS), and nuclear magnetic resonance (NMR) relaxometry analyses revealed changes in the secondary and tertiary structure of proteins as a result of the interaction of Cu2+ ions with functional groups of protein chains. In addition to its cross-linking ability, CuSO4 × 5H2O has also shown excellent antibacterial properties over common bacterial strains responsible for food spoilage. The result of this research demonstrates the potential of this hydrogel system as a unique material for food packaging.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Dumitriţa Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Marioara Moldovan
- Polymeric Composite Laboratory, Institute of Chemistry Raluca Ripan, Babeş-Bolyai University, 30 Fȃntȃnele Str., 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș Bolyai University, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Codruţa Saroşi
- Polymeric Composite Laboratory, Institute of Chemistry Raluca Ripan, Babeş-Bolyai University, 30 Fȃntȃnele Str., 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Petru Păşcuţă
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Amalia Mazilu Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
- Correspondence: ; Tel.: +40-74-317-41-95
| |
Collapse
|
15
|
Mazilu A, Popescu V, Sarosi C, Dumitrescu RS, Chisnoiu AM, Moldovan M, Dumitrescu LS, Prodan D, Carpa R, Gheorghe GF, Chisnoiu RM. Preparation and In Vitro Characterization of Gels Based on Bromelain, Whey and Quince Extract. Gels 2021; 7:191. [PMID: 34842665 PMCID: PMC8628677 DOI: 10.3390/gels7040191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The growing interest in the appearance and color of teeth has led to the emergence of a wide range of teeth whitening methods, both in dental offices and in patients' homes. Concerns about the possible side effects or toxic effects of peroxide-based whitening gels leads to the identification of alternative whitening methods, based on natural compounds with mild action on tooth enamel and remineralizing effect. In this context, this study describes the preparation and in vitro analysis of whitening gels based on natural active agents-bromelain, quince and whey-using organic (polyacrylate, polyethylene glycol) and/or inorganic (silicate) excipients. Five natural products gels were prepared, containing bromelain extract, quince extract and whey, in various proportions. Two supplementary gels, one containing Lubrizol and another containing SiO2, were prepared. All gels were submitted for multiple in vitro analysis such as: SDS-PAGE analysis, UV-vis and FTIR spectroscopy, SEM microscopy, antibacterial activity on Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. The quince extract sample was the only one which completely discolored the blue dye on SDS-PAGE analysis. On the UV-vis spectra, the 303 nm band is assigned to an in situ modified form of bromelain. SEM images of gels containing SiO2 particles show evident marks of these particles, while the rest of the gels containing Lubrizol or whey are more uniform. Regarding antibacterial tests, the SiO2 gel samples did not show inhibition in any strains, but the other tested samples varied in the size of the inhibition diameter depending on the amicrobial strain tested; the protease activity of bromelain modulates the composition of the added whey proteins. Bromelain added as a nanoencapsulated assembly better preserves its integrity. The prepared gels showed antibacterial properties.
Collapse
Affiliation(s)
- Amalia Mazilu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (A.M.); (V.P.)
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania; (A.M.); (V.P.)
| | - Codruta Sarosi
- Department of Polymer Composites, “Raluca Ripan” Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (C.S.); (L.S.D.); (D.P.)
| | - Radu Silaghi Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Andrea Maria Chisnoiu
- Department of Prosthodontics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Marioara Moldovan
- Department of Polymer Composites, “Raluca Ripan” Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (C.S.); (L.S.D.); (D.P.)
| | - Laura Silaghi Dumitrescu
- Department of Polymer Composites, “Raluca Ripan” Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (C.S.); (L.S.D.); (D.P.)
| | - Doina Prodan
- Department of Polymer Composites, “Raluca Ripan” Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (C.S.); (L.S.D.); (D.P.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Georgiana Florentina Gheorghe
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010232 Bucharest, Romania;
| | - Radu Marcel Chisnoiu
- Department of Odontology, Endodontics and Oral Pathology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 33 Motilor Street, 400001 Cluj-Napoca, Romania;
| |
Collapse
|