1
|
Sefid-Sefidehkhan Y, Jouyban A, Soleymani J, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rahimpour E. Spot test with smartphone digital image analysis for determination of methadone in exhaled breath condensate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125612. [PMID: 39736184 DOI: 10.1016/j.saa.2024.125612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
In this work, we explored the potential of the spot test combined with image analysis using smartphones as a rapid, simple, low-cost, and environmentally friendly method for identifying methadone concentration. Herein, a carbon-gold nanocomposite has been used to generate color variation at different concentrations of methadone. The data obtained from the digital image colorimetric method was compared with those from the UV-Vis spectroscopy as a standard technique. This method was also utilized for extensive optimization and validation procedures. Through image analysis, it can be obtained with the PhotoMetrix smartphone App. and single-variable calibration of collected images. This program computes and processes image histograms from the smartphone camera automatically to determine the concentration of methadone in biological samples. For further analysis, the multivariate calibration technique of PARAFAC can also be used on the images that were taken inside the MATLAB program.
Collapse
Affiliation(s)
- Yasaman Sefid-Sefidehkhan
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran; LIVER and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
3
|
Hui S. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:68. [DOI: 10.1007/s11051-023-05701-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 01/06/2025]
|
4
|
Liu Z, Lu X, Liu M, Wang W. Blue, Yellow, and Red Carbon Dots from Aromatic Precursors for Light-Emitting Diodes. Molecules 2023; 28:molecules28072957. [PMID: 37049718 PMCID: PMC10096300 DOI: 10.3390/molecules28072957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In this work, multicolor fluorescent carbon dots with red (R-CDs), yellow (Y-CDs), and blue (B-CDs) emissions were prepared by choosing proper aromatic precursors with different amounts of benzene rings through a simple solvothermal method. The characterization showed that the prepared carbon dots were spherical with a size under 10 nm, rich surface functional groups, and good stability. The emission wavelengths were located at 440, 530, and 580 nm under the excitation of 370 nm. The relative fluorescence quantum yield (QY) of R-CDs, Y-CDs, and B-CDs was 11%, 59%, and 33%, respectively. The related characterization demonstrated that the redshift in the photoluminescence was caused by the synergistic effect of the increasing graphitic nitrogen content, quantum size effect and surface oxidation state. By mixing the three prepared CDs into a PVA matrix, the transparent and flexible films produced relucent blue, yellow, and red emissions under 365 nm UV light, and solid-state quenching was effectively avoided. LEDs were fabricated by using B-CDs, Y-CDs, and R-CDs/PVA with a semiconductor chip. These CDs-based LEDs produced bright blue, yellow, and red light with CIE color coordinates of (0.16, 0.02), (0.38, 0.58), and (0.50, 0.49) were successfully manufactured utilizing the prepared blue, yellow and red multicolor carbon dots as the solid luminescent materials. The results showed that the synthesized CDs can be potentially applied in multi-color monitors as a promising candidate for light-emitting diodes (LEDs). This work blazes a novel trail for the controllable preparation of multicolor fluorescent carbon dots.
Collapse
Affiliation(s)
- Zhenzhen Liu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China; (Z.L.); (X.L.)
| | - Xiaofei Lu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China; (Z.L.); (X.L.)
| | | | - Wenjing Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China; (Z.L.); (X.L.)
- Correspondence: ; Tel.: +86-532-85953981
| |
Collapse
|
5
|
Xue S, Li P, Sun L, An L, Qu D, Wang X, Sun Z. The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206180. [PMID: 36650992 DOI: 10.1002/smll.202206180] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Fluorescent carbon dots are a novel type of nanomaterial. Due to their excellent optical properties, they have extensive application prospects in many fields. Studying the formation process and fluorescence mechanism of CDs will assist scientists in understanding the synthesis of CDs and guide more profound applications. Due to their conjugated structures, aromatic compounds have been continuously used to synthesize CDs, with emissions ranging from blue to NIR. There is a lack of a systematic summary of the formation process and fluorescence mechanism of aromatic precursors to form CDs. In this review, the formation process of CDs is first categorized into three main classes according to the precursor types of aromatic compounds: amines, phenols, and polycyclics. And then, the fluorescence mechanism of CDs synthesized from aromatic compounds is summarized. The challenges and prospects are proposed in the last section.
Collapse
Affiliation(s)
- Shanshan Xue
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Pengfei Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Lu Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Li An
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Dan Qu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100 Pingleyuan, Beijing, 100124, P. R. China
| |
Collapse
|
6
|
Wang R, Li S, Huang H, Liu B, Gao L, Qu M, Wei Y, Wei J. Preparation of Carbon Dots from PET Waste by One-step Hydrothermal Method and its Application in Light Blocking Films and LEDs. J Fluoresc 2023:10.1007/s10895-022-03132-9. [PMID: 36637778 DOI: 10.1007/s10895-022-03132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
An environmentally friendly PET-based Carbon Dots (PET-CDs) with excellent fluorescence properties were prepared with waste PET bottle, pyromellitic acid and ammonia water as raw materials by one-step hydrothermal method. The preparation mechanism of PET-CDs was as follows: PET first underwent ammonolysis reaction to produce terephthalic acid diamide and ethylene glycol, and then dehydrated and carbonized with pyromellitic acid to form PET-CDs. The as-prepared PET-CDs exhibit excitation-independent emission properties in the range from 340 to 440 nm, and the fluorescence quantum yield is as high as 87.36%. In terms of structure, PET-CDs is a spherical structure with an average particle size of 2.0 nm, and its surface contains carboxyl and amino groups. The PET-CDs were dispersed in a PVA matrix to obtain an light blocking films(LBFs) for 250-450 nm light with excellent properties, and its transparency for 450-700 nm light is good. In addition, PET-CDs was used in the fields of LED, and it was found that the color coordinate for the LED assembled with PET-CDs and 395 nm LED chips is (0.55, 0.44) and the correlated color temperature is 2018 K.
Collapse
Affiliation(s)
- Rui Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China.,Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Shumiao Li
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Hanjiang Huang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Botong Liu
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Lu Gao
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Meiru Qu
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Yanying Wei
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China
| | - Jianfei Wei
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, 100029, Beijing, China. .,Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, 100029, Beijing, China.
| |
Collapse
|
7
|
Carbon quantum dots with pH-responsive orange-/red-light emission for fluorescence imaging of intracellular pH. Mikrochim Acta 2022; 190:21. [PMID: 36512123 DOI: 10.1007/s00604-022-05605-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
N-doped carbon quantum dots (N-CDs) with polyaminobenzene hydrazine as precursor were prepared by solvothermal method for the monitoring of pH fluctuation in HeLa cells via fluorescence imaging. The N-CDs show two emission wavelengths at 582 and 640 nm under different pH with two excitation wavelengths. The fluorescence intensity at 640 nm (λex = 520 nm) and the ratio of F582/F640 (λex = 470 nm) linearly increase with pH in the range of 2.4 ~ 3.6 (R2 = 992) and 5.6 ~ 7.6 (R2 = 0.987), respectively. The sensor exhibits high sensitivity and reversibility and anti-interference capability, thus enabling sensing pH change in intracellular environment in real time, as demonstrated by successful monitoring of intracellular pH fluctuation during H2O2 stimulation in HeLa cells.
Collapse
|
8
|
Trapani D, Macaluso R, Crupi I, Mosca M. Color Conversion Light-Emitting Diodes Based on Carbon Dots: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5450. [PMID: 35955386 PMCID: PMC9369759 DOI: 10.3390/ma15155450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/08/2023]
Abstract
This paper reviews the state-of-the-art technologies, characterizations, materials (precursors and encapsulants), and challenges concerning multicolor and white light-emitting diodes (LEDs) based on carbon dots (CDs) as color converters. Herein, CDs are exploited to achieve emission in LEDs at wavelengths longer than the pump wavelength. White LEDs are typically obtained by pumping broad band visible-emitting CDs by an UV LED, or yellow-green-emitting CDs by a blue LED. The most important methods used to produce CDs, top-down and bottom-up, are described in detail, together with the process that allows one to embed the synthetized CDs on the surface of the pumping LEDs. Experimental results show that CDs are very promising ecofriendly candidates with the potential to replace phosphors in traditional color conversion LEDs. The future for these devices is bright, but several goals must still be achieved to reach full maturity.
Collapse
Affiliation(s)
| | | | | | - Mauro Mosca
- Thin-Films Laboratory, Department of Engineering, University of Palermo, Viale delle Scienze, Bdg. 9, I-90129 Palermo, Italy
| |
Collapse
|
9
|
An Y, Liu C, Li Y, Chen M, Zheng Y, Tian H, Shi R, He X, Lin X. Application of high-efficiency green fluorescent carbon dots prepared by acid catalysis in multicolour LEDs. RSC Adv 2021; 11:38033-38039. [PMID: 35498082 PMCID: PMC9044061 DOI: 10.1039/d1ra07280c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Acidic reagents play an important role in the preparation of carbon dots (CDs). Therefore, we prepared efficient green fluorescent CDs by potassium bisulfate, acetic acid and hydrochloric acid catalysis and discussed why the acid catalyst induced a fluorescence redshift and improved the quantum yield of the CDs. Furthermore, the concentration-dependent photoluminescence behaviour of the CDs was characterized. CD/PVA composites emitting green to yellow light were obtained by exploiting the fluorescence tunability of CDs. Based on different light-emitting diode substrates, green, yellow and white light-emitting diodes with excellent performance were prepared.
Collapse
Affiliation(s)
- Yulong An
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming China
| | - Yan Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
| | - Menglin Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
| | - Yunwu Zheng
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming China
| | - Hao Tian
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences Kunming China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
| | - Xu Lin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University Kunming China
- Key Laboratory of State Forestry Administration for Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University Kunming China
| |
Collapse
|