1
|
Bamigbade GB, Abdin M, Subhash A, Arachchi MP, Ullah N, Gan R, Ali A, Kamal‐Eldin A, Ayyash M. Plant polysaccharide-capped nanoparticles: A sustainable approach to modulate gut microbiota and advance functional food applications. Compr Rev Food Sci Food Saf 2025; 24:e70156. [PMID: 40052474 PMCID: PMC11887029 DOI: 10.1111/1541-4337.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
Plant-derived polysaccharides have emerged as sustainable biopolymers for fabricating nanoparticles (polysaccharide-based nanomaterials [PS-NPs]), presenting unique opportunities to enhance food functionality and human health. PS-NPs exhibit exceptional biocompatibility, biodegradability, and structural versatility, enabling their integration into functional foods to positively influence gut microbiota. This review explores the mechanisms of PS-NPs interaction with gut microbiota, highlighting their ability to promote beneficial microbial populations, such as Lactobacilli and Bifidobacteria, and stimulate the production of short-chain fatty acids. Key synthesis and stabilization methods of PS-NPs are discussed, focusing on their role in improving bioavailability, stability, and gastrointestinal delivery of bioactive compounds in food systems. The potential of PS-NPs to address challenges in food science, including enhancing nutrient absorption, mitigating intestinal dysbiosis, and supporting sustainable food production through innovative nanotechnology, is critically evaluated. Barriers such as enzymatic degradation and physicochemical stability are analyzed, alongside strategies to optimize their functionality within complex food matrices. The integration of PS-NPs in food systems offers a novel approach to modulate gut microbiota, improve intestinal health, and drive the development of next-generation functional foods. Future research should focus on bridging knowledge gaps in metagenomic and metabolomic profiling of PS-NPs, optimizing their design for diverse applications, and advancing their role in sustainable and health-promoting food innovations.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Mohamed Abdin
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Athira Subhash
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Maduni Paththuwe Arachchi
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Naeem Ullah
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Ren‐You Gan
- Department of Food Science and NutritionHong Kong Polytechnic University, Hung HomKowloonHong Kong SARChina
- Research Institute for Future FoodHong Kong Polytechnic University, Hung HomKowloonHong Kong SARChina
| | - Abdelmoneim Ali
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Afaf Kamal‐Eldin
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary MedicineUnited Arab Emirates University (UAEU)Al AinUAE
| |
Collapse
|
2
|
Rojas-Cabeza JF, Moreno-Cordova EN, Ayala-Zavala JF, Ochoa-Teran A, Sonenshine DE, Valenzuela JG, Sotelo-Mundo RR. A review of acaricides and their resistance mechanisms in hard ticks and control alternatives with synergistic agents. Acta Trop 2025; 261:107519. [PMID: 39746593 PMCID: PMC11729571 DOI: 10.1016/j.actatropica.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Ticks are significant ectoparasites that transmit a variety of pathogens, leading to serious human and animal diseases, including Lyme disease, Rocky Mountain spotted fever, anaplasmosis, and many others. The emergence of acaricide resistance in hard ticks presents a formidable challenge for public health and livestock management, exacerbated by the increasing incidence of tick-borne diseases and associated economic losses, estimated at $20 billion annually in the livestock sector alone. This review examines the mechanisms underlying acaricide resistance, focusing on genetic mutations, metabolic detoxification processes, and behavioral adaptations in tick populations. We detail the role of commercial acaricides in tick control while emphasizing the adverse effects of their overuse, which contributes to the development of resistant strains. Innovative control strategies are explored, including using pesticide synergists that enhance the efficacy of existing acaricides by targeting the tick's phosphagen system. Additionally, this review highlights the importance of understanding the synergistic interactions between various control methods, including non-chemical approaches such as personal protection measures and landscape management. The review concludes by underscoring the urgent need for novel acaricides with new modes of action and implementing regular monitoring practices to combat acaricide resistance effectively. Addressing these challenges is vital for the sustainable management of tick populations and protecting public health and livestock productivity.
Collapse
Affiliation(s)
- Jose Felix Rojas-Cabeza
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico
| | - Elena N Moreno-Cordova
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico
| | | | - Adrian Ochoa-Teran
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, 22444, Tijuana, Baja California, Mexico
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, 20852, USA
| | - Rogerio R Sotelo-Mundo
- Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, H P S AK, Mushtaq RY, Badr MY, Safhi AY, Hosny KM. Revolutionizing Cancer Treatment: Biopolymer-Based Aerogels as Smart Platforms for Targeted Drug Delivery. Macromol Rapid Commun 2024; 45:e2300687. [PMID: 38430068 DOI: 10.1002/marc.202300687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.
Collapse
Affiliation(s)
- Hala M Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amerh Aiad Alahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Rayan Y Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Moutaz Y Badr
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104071. [PMID: 38184175 DOI: 10.1016/j.ibmb.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.
Collapse
Affiliation(s)
- Dhyeykumar Rabadiya
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Matthias Behr
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Milad SS, Ali SE, Attia MZ, Khattab MS, El-Ashaal ES, Elshoky HA, Azouz AM. Enhanced immune responses in dexamethasone immunosuppressed male rats supplemented with herbal extracts, chitosan nanoparticles, and their conjugates. Int J Biol Macromol 2023; 250:126170. [PMID: 37573907 DOI: 10.1016/j.ijbiomac.2023.126170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Nowadays, the world is challenged with highly contagious diseases, one of their preliminary virulence mechanisms is the suppression of innate immunity. Therefore, promoting natural immunity is a good precautionary strategy. we investigated and compared the effects of several natural herbal extracts -Moringa oleifera, Ziziphus spina christi, and Saussurea costus, and chitosan nanoparticles (CS NPs)- as well as conjugated extracts with CS NPs on the immunological parameters of dexamethasone immunosuppressed (IS) male rats. The plant extracts were assessed for total flavonoids, phenolics, and antioxidant activity. The CS NPs and their conjugates were characterized using particles size, zeta potentials, and Fourier-transform infrared spectroscopy analyses. The chemical analysis of the plant extracts, CS NPs, and their conjugates was performed using energy dispersive X-ray fluorescence, and their cytotoxicity was evaluated in human lung fibroblast (WI-38) and human embryonic kidney (HEK-293) cell lines. For in vivo evaluations, 72 adult male rats were divided into 9 groups: control, IS, three plant extracts, CS, and conjugates of the three plant extracts and CS NPs. Oral supplementation (day after day) lasted for 28 days. Liver, kidney, and spleen tissue samples were collected for histopathology and Ki-67 expression analyses. The results revealed that the plant extracts and CS improved the total leukocyte counts, complement 3, complement 4, interferon-gamma, and tumor necrosis factor levels at day 28. However, the plant extract-CS NPs conjugates faster and have higher immunostimulatory effects at day 14. Furthermore, the atrophied white pulp of the spleen induced by dexamethasone was alleviated, and Ki-67 expression was elevated in all the treated groups. Conclusively, the conjugates of Moringa oleifera, Ziziphus spina christi, and Saussurea costus extract with CS NPs demonstrated more potent and rapid immune responses at lower doses and concentrations compared to the plant extracts or CS NPs alone, without causing liver or kidney injuries. Thus, supplementation of these conjugated plant extracts at lower doses and concentrations is recommended to improve immunity while considering safety considerations.
Collapse
Affiliation(s)
- Selvia S Milad
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Sara E Ali
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mahmoud Z Attia
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Eman S El-Ashaal
- Nanotechnology and Advanced Material Central Lab, Agriculture Research Center, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Hisham A Elshoky
- Nanotechnology and Advanced Material Central Lab, Agriculture Research Center, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt; Tumor Biology Research Program, Department of Research, Children's Cancer Hospital Egypt 57357, P.O Box 11441, 1 Seket Al-Emam Street, Cairo, Egypt.
| | - Afaf M Azouz
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF, Narmani A, Farhood B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, 31001 Anbar, Iraq
| | - Noor Adil Abood
- Medical Laboratory Techniques, Al-Ma'moon University, Baghdad, Iraq
| | - Raghad Z Atta
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Laboratory of Psychometrics, Comparative psychology and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Osama H Abed
- Dentistry Department, Al-Rasheed University College, Baghdad, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
De Giorgio E, Giannios P, Espinàs ML, Llimargas M. A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila. PLoS Biol 2023; 21:e3001978. [PMID: 36689563 PMCID: PMC9894549 DOI: 10.1371/journal.pbio.3001978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/02/2023] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
Chitin is a highly abundant polymer in nature and a principal component of apical extracellular matrices in insects. In addition, chitin has proved to be an excellent biomaterial with multiple applications. In spite of its importance, the molecular mechanisms of chitin biosynthesis and chitin structural diversity are not fully elucidated yet. To investigate these issues, we use Drosophila as a model. We previously showed that chitin deposition in ectodermal tissues requires the concomitant activities of the chitin synthase enzyme Kkv and the functionally interchangeable proteins Exp and Reb. Exp/Reb are conserved proteins, but their mechanism of activity during chitin deposition has not been elucidated yet. Here, we carry out a cellular and molecular analysis of chitin deposition, and we show that chitin polymerisation and chitin translocation to the extracellular space are uncoupled. We find that Kkv activity in chitin translocation, but not in polymerisation, requires the activity of Exp/Reb, and in particular of its conserved Nα-MH2 domain. The activity of Kkv in chitin polymerisation and translocation correlate with Kkv subcellular localisation, and in absence of Kkv-mediated extracellular chitin deposition, chitin accumulates intracellularly as membrane-less punctae. Unexpectedly, we find that although Kkv and Exp/Reb display largely complementary patterns at the apical domain, Exp/Reb activity nonetheless regulates the topological distribution of Kkv at the apical membrane. We propose a model in which Exp/Reb regulate the organisation of Kkv complexes at the apical membrane, which, in turn, regulates the function of Kkv in extracellular chitin translocation.
Collapse
Affiliation(s)
- Ettore De Giorgio
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Panagiotis Giannios
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - M. Lluisa Espinàs
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Llimargas
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
8
|
Ghadhban MY, Rashid KT, A AbdulRazak A, Alsalhy QF. Recent progress and future directions of membranes green polymers for oily wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:57-82. [PMID: 36640024 DOI: 10.2166/wst.2022.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The preparation, modification and application of green polymers such as poly-lactic acid (PLA), chitosan (CS), and cellulose acetate (CA) for oily wastewater treatment is summed up in this review. Due to the low environmental pollution, good chemical resistivity, high hydrophobicity, and good capacity for water-oil emulsion separation of the presented polymers, it then highlights the various membrane production methods and their role in producing effective membranes, with a focus on recent advances in improving membrane properties through the addition of various Nano materials. As a result, the hydrophilic/hydrophobic properties that are critical in the oil separation mechanism are highlighted. Finally, it looks at the predictions and challenges in oil/water separation and recovery. These ideas are discussed with a focus on modern production methods and oil separation proficiency.
Collapse
Affiliation(s)
- Maryam Y Ghadhban
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| | - Khalid T Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| | - Adnan A AbdulRazak
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Iraq, Al-sinaa Street 52, Baghdad 10066, Iraq E-mail:
| |
Collapse
|
9
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
10
|
The Use of Chitosan-Coated Nanovesicles in Repairing Alcohol-Induced Damage of Liver Cells in Mice. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060762. [PMID: 35744025 PMCID: PMC9229649 DOI: 10.3390/medicina58060762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives In the past few decades, the studies concerning the natural polysaccharide chitosan have been centered on a new direction: its hepatoprotective action. The aim of our study was to evaluate the influence of previously designed chitosan lipid vesicles on the liver damage induced by alcohol consumption in mice. Materials and Methods The study involved the oral administration of substances in one daily dose as follows: Group 1 (control): water; Group 2 (control alcohol): 5% alcohol in water; Group 3 (CHIT): 0.1 mL/10 g body weight chitosan solution in animals treated with alcohol; Group 4 (CHIT-ves): 0.1 mL/10 g body chitosan vesicles in animals treated with alcohol; Group 5 (AcA): 200 mg/kg body ascorbic acid in animals treated with alcohol. In order to evaluate liver damage after alcohol consumption, the following hematological parameters were tested: the activity of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase; serum values of urea and creatinine; the phagocytic capacity of polymorphonuclear neutrophilsin peripheral blood;serum opsonic capacity;bactericidal capacity of peritoneal macrophages; and the activity of malondialdehyde, glutathione peroxidase, superoxide dismutase and lactate dehydrogenase. Results and Conclusions The treatment with chitosan vesicles decreased liver enzyme activity and reduced the oxidative stress disturbances in alcoholic mice, thus repairing the hepatic functional and structural damages. These beneficial activities of chitosan vesicles were comparable with ascorbic acid effects in alcoholic mice.
Collapse
|