1
|
Sangkanu S, Khanansuk J, Phoopha S, Udomuksorn W, Phupan T, Puntarat J, Tungsukruthai S, Dej-adisai S. Utility Assessment of Isolated Starch and Extract from Thai Yam ( Dioscorea hispida Dennst.) for Cosmetic via In Vitro and In Vivo Studies. Life (Basel) 2025; 15:151. [PMID: 40003560 PMCID: PMC11856013 DOI: 10.3390/life15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
In Thailand, wild yam, or Dioscorea hispida Dennst., is a starchy crop that is usually underutilized in industry. The purpose of this study was to isolate the starch and extract the phytochemical from D. hispida and use them in cosmetics. Starch was used instead of talcum, which can cause pulmonary talcosis in dusting powder formulas (DP 1-5). GC-MS was used to identify the bioactive components present in the ethanolic extract of D. hispida. The main compounds were identified as 9,12-octadecadienoic acid (Z,Z)- (6.51%), stigmasta-5,22-dien-3-ol, (3.beta.,22E)- (6.41%), linoleic acid ethyl ester (5.72%), (Z,Z)-9,12-octadeca-dienoic acid, 2,3-dihydroxy-propyl (3.89%), and campesterol (3.40%). Then, the extract was used as an ingredient in facial sleeping mask gel formulas (SM 1-SM 5). Stability tests, physical characteristics, enzyme inhibitions, and sensitization dermal toxicity tests were used to evaluate the DP and SM formulations. The results showed that the fresh tubers of D. hispida showed a 12.5% w/w starch content. The findings demonstrated that starch powder had a restricted size distribution, ranging from 2 to 4 μm, and a smooth surface that was polygonal. Following stability testing, the color, odor, size, and flowability of all DP formulations did not significantly differ. The SEM investigation revealed that DP particles were homogenous. For the sensitization dermal toxicity test, DP denoted no erythema or skin irritation in the guinea pigs. After stability testing, the colors of the SM formulas were deeper, and their viscosity slightly increased. The pH did not significantly change. After the stability test, SM formulas that contained Glycyrrhiza glabra and D. hispida extracts exhibited stable tyrosinase and elastase inhibitory activities, respectively. In the sensitization dermal toxicity test, guinea pigs showed skin irritation at level 2 (not severe) from SM, indicating that redness developed. All of these findings indicate that D. hispida is a plant that has potential for use in the cosmetics industry. Furthermore, D. hispida starch can be made into a beauty dusting powder, and more research should be conducted to develop an effective remedy for patients or those with skin problems.
Collapse
Affiliation(s)
- Suthinee Sangkanu
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.S.); (J.K.); (S.D.)
| | - Jiraporn Khanansuk
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.S.); (J.K.); (S.D.)
| | - Sathianpong Phoopha
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.P.)
| | - Wandee Udomuksorn
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Thitiporn Phupan
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Jirapa Puntarat
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Sucharat Tungsukruthai
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (W.U.); (T.P.); (J.P.); (S.T.)
| | - Sukanya Dej-adisai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (S.S.); (J.K.); (S.D.)
| |
Collapse
|
2
|
Grifasi N, Ziantoni B, Fino D, Piumetti M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33656-5. [PMID: 38780851 DOI: 10.1007/s11356-024-33656-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
This review explores a set of sustainable applications of clinoptilolite, a natural zeolite abundant around the world in different localities. Thanks to its physico-chemical properties this material is extremely versatile for several applications, ranging from environmental catalysis and CO2 removal to industrial and agricultural wastewater purification, aquaculture, animal feeding, and food industry but also medical applications and energy storage systems. Due to the presence of cations in its framework, it is possible to tune the material's features making it suitable for adsorbing specific compounds. Thus, this review aims to provide insight into developing new technologies based on the use of this material that is sustainable, not harmful for humans and animals, naturally abundant, and above all cost-effective. Furthermore, it is intended to promote the use of natural materials in various areas with a view to sustainability and to reduce as far as possible the use of chemicals or other materials whose synthesis process can have a polluting effect on the environment.
Collapse
Affiliation(s)
- Nadia Grifasi
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy
| | - Bianca Ziantoni
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy
| | - Debora Fino
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy
| | - Marco Piumetti
- Department of Applied Science and Technology, Corso Duca Degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
3
|
Senila M, Coldea TE, Senila L, Mudura E, Cadar O. Activated natural zeolites for beer filtration: A pilot scale approach. Heliyon 2023; 9:e20031. [PMID: 37809938 PMCID: PMC10559772 DOI: 10.1016/j.heliyon.2023.e20031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
A clinoptilolite-rich natural zeolite was tested as a substitute for kieselguhr as a filtering material to eliminate ingredients that cause beer haze formation. Two-grain sizes of micronized natural zeolite were thermally activated to 400 °C, to enhance its adsorption performance and remove the impurities adsorbed in the microporous system of zeolites, followed by their physicochemical characterization. The activated zeolites mixed with four commercial filter aids in different ratios were used for beer filtration at the pilot scale. Most of the physicochemical and sensory characteristics of beers filtered with commercial filter aids and with zeolites were similar. Using zeolite in filtering mixtures significantly reduces the number of microorganisms present in the filtered beer, which can eliminate the necessity of beer sterilization after filtration. The results evidenced that activated natural zeolites, which are cheap materials, are promising candidates as filter aids and can replace kieselguhr without producing any degradation of the beer filtration process.
Collapse
Affiliation(s)
- Marin Senila
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372, Cluj-Napoca, Romania
| | - Lacrimioara Senila
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372, Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 67 Donath Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Pavlovich-Cristopulos G, Schiavo B, Romero FM, Hernández-Mendiola E, Angulo-Molina A, Meza-Figueroa D. Oral bioaccessibility of metal(oid)s in commercial zeolite used as a dietary supplement: Implications to human health risk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Aslani Z, Nazemi N, Rajabi N, Kharaziha M, Bakhsheshi-Rad HR, Kasiri-Asgarani M, Najafinezhad A, Ismail AF, Sharif S, Berto F. Antibacterial Activity and Cell Responses of Vancomycin-Loaded Alginate Coating on ZSM-5 Scaffold for Bone Tissue Engineering Applications. MATERIALS 2022; 15:ma15144786. [PMID: 35888255 PMCID: PMC9318858 DOI: 10.3390/ma15144786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Despite the significant advancement in bone tissue engineering, it is still challenging to find a desired scaffold with suitable mechanical and biological properties, efficient bone formation in the defect area, and antibacterial resistivity. In this study, the zeolite (ZSM-5) scaffold was developed using the space holder method, and a novel vancomycin-loaded alginate coating was developed on it to promote their characteristics. Our results demonstrated the importance of alginate coating on the microstructure, mechanical, and cellular properties of the ZSM-5 scaffold. For instance, a three-fold increase in the compressive strength of coated scaffolds was observed compared to the uncoated ZSM-5. After the incorporation of vancomycin into the alginate coating, the scaffold revealed significant antibacterial activity against Staphylococcus aureus (S. aureus). The inhibition zone increased to 35 mm. Resets also demonstrated 74 ± 2.5% porosity, 4.3 ± 0.07 MPa strength in compressive conditions, acceptable cellular properties (72.3 ± 0.2 (%control) cell viability) after 7 days, good cell attachment, and calcium deposition. Overall, the results revealed that this scaffold could be a great candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Z. Aslani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (Z.A.); (N.N.); (M.K.-A.); (A.N.)
| | - N. Nazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (Z.A.); (N.N.); (M.K.-A.); (A.N.)
| | - N. Rajabi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - M. Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
- Correspondence: (M.K.); (H.R.B.-R.); (F.B.)
| | - H. R. Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (Z.A.); (N.N.); (M.K.-A.); (A.N.)
- Correspondence: (M.K.); (H.R.B.-R.); (F.B.)
| | - M. Kasiri-Asgarani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (Z.A.); (N.N.); (M.K.-A.); (A.N.)
| | - A. Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (Z.A.); (N.N.); (M.K.-A.); (A.N.)
| | - A. F. Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - S. Sharif
- Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - F. Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence: (M.K.); (H.R.B.-R.); (F.B.)
| |
Collapse
|