1
|
Ma Y, Wang Y, Tong S, Wang Y, Wang Z, Sui R, Yang K, Witte F, Yang S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J Orthop Translat 2024; 49:135-155. [PMID: 40226784 PMCID: PMC11993841 DOI: 10.1016/j.jot.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 04/15/2025] Open
Abstract
Background Porous metal materials have been widely studied for applications in orthopedic field, owing to their excellent features and properties in bone healing. Porous metal materials with different compositions, manufacturing methods, and porosities have been developed. Whereas, the systematic mechanisms on how porous metal materials promote bone healing still remain unclear. Methods This review is concerned on the porous metal materials from three aspects with accounts of specific mechanisms, inflammatory regulation, angiogenesis and osteogenesis. We place great emphasis on different cells regulated by porous metal materials, including mesenchymal stem cells (MSCs), macrophages, endothelial cells (ECs), etc. Result The design of porous metal materials is diversified, with its varying pore sizes, porosity material types, modification methods and coatings help researchers create the most experimentally suitable and clinically effective scaffolds. Related signal pathways presented from different functions showed that porous metal materials could change the behavior of cells and the amount of cytokines, achieving good influence on osteogenesis. Conclusion This article summarizes the current progress achieved in the mechanism of porous metal materials promoting bone healing. By modulating the cellular behavior and physiological status of a spectrum of cellular constituents, such as macrophages, osteoblasts, and osteoclasts, porous metal materials are capable of activating different pathways and releasing regulatory factors, thus exerting pivotal influence on improving the bone healing effect. The translational potential of this article Porous metal materials play a vital role in the treatment of bone defects. Unfortunately, although an increasing number of studies have been concentrated on the effect of porous metal materials on osteogenesis-related cells, the comprehensive regulation of porous metal materials on the host cell functions during bone regeneration and the related intrinsic mechanisms remain unclear. This review summarizes different design methods for porous metal materials to fabricate the most suitable scaffolds for bone remodeling, and systematically reviews the corresponding mechanisms on inflammation, angiogenesis and osteogenesis of porous metal materials. This review can provide more theoretical framework and innovative optimization for the application of porous metal materials in orthopedics, dentistry, and other areas, thereby advancing their clinical utility and efficacy.
Collapse
Affiliation(s)
- Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehan Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Zhuoya Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Rongze Sui
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Assmannshauser Strasse 4–6, 14197, Berlin, Germany
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
2
|
Shi X, Sun Y, Tian H, Abhilash PM, Luo X, Liu H. Material Extrusion Filament Width and Height Prediction via Design of Experiment and Machine Learning. MICROMACHINES 2023; 14:2091. [PMID: 38004948 PMCID: PMC10673448 DOI: 10.3390/mi14112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The dimensions of material extrusion 3D printing filaments play a pivotal role in determining processing resolution and efficiency and are influenced by processing parameters. This study focuses on four key process parameters, namely, nozzle diameter, nondimensional nozzle height, extrusion pressure, and printing speed. The design of experiment was carried out to determine the impact of various factors and interaction effects on filament width and height through variance analysis. Five machine learning models (support vector regression, backpropagation neural network, decision tree, random forest, and K-nearest neighbor) were built to predict the geometric dimension of filaments. The models exhibited good predictive performance. The coefficients of determination of the backpropagation neural network model for predicting line width and line height were 0.9025 and 0.9604, respectively. The effect of various process parameters on the geometric morphology based on the established prediction model was also studied. The order of influence on line width and height, ranked from highest to lowest, was as follows: nozzle diameter, printing speed, extrusion pressure, and nondimensional nozzle height. Different nondimensional nozzle height settings may cause the extruded material to be stretched or squeezed. The material being in a stretched state leads to a thin filament, and the regularity of processing parameters on the geometric size is not strong. Meanwhile, the nozzle diameter exhibits a significant impact on dimensions when the material is in a squeezing state. Thus, this study can be used to predict the size of printing filament structures, guide the selection of printing parameters, and determine the size of 3D printing layers.
Collapse
Affiliation(s)
- Xiaoquan Shi
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| | - Yazhou Sun
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| | - Haiying Tian
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| | - Puthanveettil Madathil Abhilash
- Centre for Precision Manufacturing, Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK; (P.M.A.); (X.L.)
| | - Xichun Luo
- Centre for Precision Manufacturing, Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK; (P.M.A.); (X.L.)
| | - Haitao Liu
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; (X.S.); (H.T.)
| |
Collapse
|
3
|
Guo W, Li B, Li P, Zhao L, You H, Long Y. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds. J Mater Chem B 2023; 11:9572-9596. [PMID: 37727909 DOI: 10.1039/d3tb01236k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Bone defects frequently occur in clinical settings due to trauma, disease, tumors, and other causes. The clinical use of autologous bones and allograft bone, however, has several limitations, such as limited sources, donor site morbidity, and immunological rejection. Nevertheless, there is newfound hope for regenerating and repairing bone defects through the development and integration of bone tissue engineering scaffold and additive manufacturing (AM) technology, also known as 3D printing. In particular, vat photopolymerization (VPP)-AM of bioactive ceramic bone scaffolds has garnered significant interest from interdisciplinary researchers in recent years. On the one hand, VPP-AM demonstrates clear advantages in printing accuracy and speed compared to other AM and non-AM technologies. On the other hand, bioactive ceramic materials exhibit superior bioactivity, biodegradability, and mechanical properties compared to metals, polymers, and bioinert ceramics, making them one of the most promising biomaterials for developing bone scaffolds. This paper reviews the research progress of VPP-AM of bioactive ceramic bone scaffolds, covering the process principles of various VPP-AM technologies, the performance requirements and preparation process of VPP ceramic slurry, the VPP process of bioactive ceramic bone scaffolds, and the research progress on different material types of VPP bioactive ceramic scaffolds. Firstly, we provide a brief introduction to the process principles and medical applications of various VPP technologies. Secondly, we explore the composition of the VPP ceramic slurry system, discussing the function of various components and their effects on printing quality. Thirdly, we delve into the performance requirements of bone scaffolds and summarize the research progress of VPP bioactive ceramic bone scaffolds of various material types including hydroxyapatite (HA), tricalcium phosphate (TCP), bioglass (BG), etc.; Finally, we discuss the challenges currently faced by VPP-AM bioactive ceramic bone scaffolds and propose possible development directions for the future.
Collapse
Affiliation(s)
- Wang Guo
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Bowen Li
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Ping Li
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Lei Zhao
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Hui You
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Yu Long
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Moldovan M, Dudea D, Cuc S, Sarosi C, Prodan D, Petean I, Furtos G, Ionescu A, Ilie N. Chemical and Structural Assessment of New Dental Composites with Graphene Exposed to Staining Agents. J Funct Biomater 2023; 14:jfb14030163. [PMID: 36976087 PMCID: PMC10058725 DOI: 10.3390/jfb14030163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli.
Collapse
Affiliation(s)
- Marioara Moldovan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Codruta Sarosi
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Street, 400084 Cluj-Napoca, Romania
| | - Gabriel Furtos
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Andrei Ionescu
- Oral Microbiology and Biomaterials Laboratory, Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
5
|
Shin W, Chung K. Preparation and Characterization of Poly(Acrylic Acid)-Based Self-Healing Hydrogel for 3D Shape Fabrication via Extrusion-Based 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2085. [PMID: 36903203 PMCID: PMC10004586 DOI: 10.3390/ma16052085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The three-dimensional (3D) printing of hydrogel is an issue of interest in various applications to build optimized 3D structured devices beyond 2D-shaped conventional structures such as film or mesh. The materials design for the hydrogel, as well as the resulting rheological properties, largely affect its applicability in extrusion-based 3D printing. Here, we prepared a new poly(acrylic acid)-based self-healing hydrogel by controlling the hydrogel design factors based on a defined material design window in terms of rheological properties for application in extrusion-based 3D printing. The hydrogel is designed with a poly(acrylic acid) main chain with a 1.0 mol% covalent crosslinker and 2.0 mol% dynamic crosslinker, and is successfully prepared based on radical polymerization utilizing ammonium persulfate as a thermal initiator. With the prepared poly(acrylic acid)-based hydrogel, self-healing characteristics, rheological characteristics, and 3D printing applicability are deeply investigated. The hydrogel spontaneously heals mechanical damage within 30 min and exhibits appropriate rheological characteristics, including G'~1075 Pa and tan δ~0.12, for extrusion-based 3D printing. Upon application in 3D printing, various 3D structures of hydrogel were successfully fabricated without showing structural deformation during the 3D printing process. Furthermore, the 3D-printed hydrogel structures exhibited excellent dimensional accuracy of the printed shape compared to the designed 3D structure.
Collapse
Affiliation(s)
- Woohyeon Shin
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeongwoon Chung
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|