1
|
Estévez M, Batoni E, Cicuéndez M, Bonatti AF, Fernández-Marcelo T, De Maria C, González B, Izquierdo-Barba I, Vozzi G. Fabrication of 3D Biofunctional Magnetic Scaffolds by Combining Fused Deposition Modelling and Inkjet Printing of Superparamagnetic Iron Oxide Nanoparticles. Tissue Eng Regen Med 2025:10.1007/s13770-025-00711-2. [PMID: 40100619 DOI: 10.1007/s13770-025-00711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Recently, magnetic composite biomaterials have raised attention in bone tissue engineering as the application of dynamic magnetic fields proved to modulate the proliferation and differentiation of several cell types. METHODS This study presents a novel method to fabricate biofunctional magnetic scaffolds by the deposition of superparamagnetic iron oxide nanoparticles (SPIONs) through thermal Drop-On-Demand inkjet printing on three-dimensional (3D) printed scaffolds. Firstly, 3D scaffolds based on thermoplastic polymeric composed by poly-L-lactic acid/poly-caprolactone/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) were fabricated by Fused Deposition Modelling. Then, in a second step, SPIONs were incorporated onto the surface of the scaffolds by inkjet printing following a designed 2D pattern. RESULTS A complete characterization of the resulting magnetic scaffolds was carried out attending to the surface SPIONs deposits, demonstrating the accuracy and versatility of the production technique, as well as the stability under physiological conditions and the magnetic properties. Biological evaluation with human bone marrow mesenchymal stems cells demonstrated biocompatibility of the scaffolds and increased osteogenic capability under the application of a magnetic field, due to the activation of mechanotransduction processes. CONCLUSION These results show that the developed 3D magnetic biofunctional scaffolds can be a very promising tool for advanced and personalised bone regeneration treatments.
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria, Universidad Complutense de Madrid, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Elisa Batoni
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Via Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Amedeo Franco Bonatti
- Research Center "E. Piaggio", University of Pisa, Via Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Carmelo De Maria
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy.
- Research Center "E. Piaggio", University of Pisa, Via Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria, Universidad Complutense de Madrid, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria, Universidad Complutense de Madrid, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain.
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Via Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
2
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:371-413. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
3
|
Safavi AS, Karbasi S. A new path in bone tissue engineering: polymer-based 3D-printed magnetic scaffolds (a comprehensive review of in vitro and in vivo studies). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39715733 DOI: 10.1080/09205063.2024.2444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Bone tissue engineering is a promising approach to address the increasing need for bone repair. Scaffolds play a crucial role in providing the structural framework for cell growth and differentiation. 3D printing offers precise control over scaffold design and fabrication. Polymers and inorganic compounds such as magnetic nanoparticles (MNPs) are used to create biocompatible and functional scaffolds. MNPs enhance mechanical properties, facilitate drug delivery, and enable the real-time monitoring of bone regeneration. This review highlights the potential of polymer-based 3D-printed magnetic scaffolds in advancing bone regenerative medicine.
Collapse
Affiliation(s)
- Atiyeh Sadat Safavi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
5
|
Guedes DG, Guedes GG, da Silva JDO, da Silva AL, Luna CBB, Damasceno BPGDL, Costa ACFDM. Development of Scaffolds with Chitosan Magnetically Activated with Cobalt Nanoferrite: A Study on Physical-Chemical, Mechanical, Cytotoxic and Antimicrobial Behavior. Pharmaceuticals (Basel) 2024; 17:1332. [PMID: 39458973 PMCID: PMC11509991 DOI: 10.3390/ph17101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This study investigates the development of 3D chitosan-x-cobalt ferrite scaffolds (x = 5, 7.5, and 10 wt%) with interconnected porosity for potential biomedical applications. The objective was to evaluate the effects of magnetic particle incorporation on the scaffolds' structural, mechanical, magnetic, and biological properties, specifically focusing on their biocompatibility and antimicrobial performance. Methods: Scaffolds were synthesized using freeze-drying, while cobalt ferrite nanoparticles were produced via a pilot-scale combustion reaction. The scaffolds were characterized for their physical and chemical properties, including porosity, swelling, and mechanical strength. Hydrophilicity was assessed through contact angle measurements. Antimicrobial efficacy was evaluated using time kill kinetics and agar diffusion assays, and biocompatibility was confirmed through cytotoxicity tests. Results: The incorporation of cobalt ferrite increased magnetic responsiveness, altered porosity profiles, and influenced swelling, biodegradation, and compressive strength, with a maximum value of 87 kPa at 7.5 wt% ferrite content. The scaffolds maintained non-toxicity and demonstrated bactericidal activity. The optimal concentration for achieving a balance between structural integrity and biological performance was found at 7.5 wt% cobalt ferrite. Conclusions: These findings suggest that magnetic chitosan-cobalt ferrite scaffolds possess significant potential for use in biomedical applications, including tissue regeneration and advanced healing therapies. The incorporation of magnetic properties enhances both the structural and biological functionalities, presenting promising opportunities for innovative therapeutic approaches in reconstructive procedures.
Collapse
Affiliation(s)
- Danyelle Garcia Guedes
- Laboratory of Ceramic Materials Synthesis, Federal University of Campina Grande, 882 Aprígio Veloso Street—Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Gabryella Garcia Guedes
- Pharmaceutical Product Development and Characterisation Laboratory, State University of Paraíba, 351 Baraúnas Street—Universitário District, Campina Grande 58429-500, PB, Brazil
| | - Jessé de Oliveira da Silva
- Drug Development and Testing Laboratory, State University of Paraíba, 351 Baraúnas Street—University District, Campina Grande 58429-500, PB, Brazil
| | - Adriano Lima da Silva
- Laboratory of Ceramic Materials Synthesis, Federal University of Campina Grande, 882 Aprígio Veloso Street—Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Carlos Bruno Barreto Luna
- Materials Engineering Academic Unit, Polymer Processing Laboratory, Federal University of Campina Grande, Av. Aprígio Veloso, 882, Campina Grande 58429-900, PB, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Product Development and Characterisation Laboratory, State University of Paraíba, 351 Baraúnas Street—Universitário District, Campina Grande 58429-500, PB, Brazil
| | - Ana Cristina Figueiredo de Melo Costa
- Laboratory of Ceramic Materials Synthesis, Federal University of Campina Grande, 882 Aprígio Veloso Street—Bodocongó, Campina Grande 58429-900, PB, Brazil
| |
Collapse
|
6
|
Estévez M, Cicuéndez M, Colilla M, Vallet-Regí M, González B, Izquierdo-Barba I. Magnetic colloidal nanoformulations to remotely trigger mechanotransduction for osteogenic differentiation. J Colloid Interface Sci 2024; 664:454-468. [PMID: 38484514 DOI: 10.1016/j.jcis.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Nowadays, diseases associated with an ageing population, such as osteoporosis, require the development of new biomedical approaches to bone regeneration. In this regard, mechanotransduction has emerged as a discipline within the field of bone tissue engineering. Herein, we have tested the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs), obtained by the thermal decomposition method, with an average size of 13 nm, when exposed to the application of an external magnetic field for mechanotransduction in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The SPIONs were functionalized with an Arg-Gly-Asp (RGD) peptide as ligand to target integrin receptors on cell membrane and used in colloidal state. Then, a comprehensive and comparative bioanalytical characterization of non-targeted versus targeted SPIONs was performed in terms of biocompatibility, cell uptake pathways and mechanotransduction effect, demonstrating the osteogenic differentiation of hBM-MSCs. A key conclusion derived from this research is that when the magnetic stimulus is applied in the first 30 min of the in vitro assay, i.e., when the nanoparticles come into contact with the cell membrane surface to initiate endocytic pathways, a successful mechanotransduction effect is observed. Thus, under the application of a magnetic field, there was a significant increase in runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) gene expression as well as ALP activity, when cells were exposed to RGD-functionalized SPIONs, demonstrating osteogenic differentiation. These findings open new expectations for the use of remotely activated mechanotransduction using targeted magnetic colloidal nanoformulations for osteogenic differentiation by drug-free cell therapy using minimally invasive techniques in cases of bone loss.
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
7
|
Xu H, Cui Y, Tian Y, Dou M, Sun S, Wang J, Wu D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1302-1322. [PMID: 38346448 DOI: 10.1021/acsbiomaterials.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.
Collapse
Affiliation(s)
- Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Minghan Dou
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
8
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|