1
|
An JH, Kim HY. Scaffolds Bioink for Three-Dimensional (3D) Bioprinting. Food Sci Anim Resour 2025; 45:126-144. [PMID: 39840242 PMCID: PMC11743847 DOI: 10.5851/kosfa.2024.e120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Rapid population growth and a corresponding increase in the demand for animal-derived proteins have led to food supply challenges and the need for alternative and sustainable meat production methods. Therefore, this study explored the importance of cell engineering technology-based three-dimensional bioprinting and bioinks, which play key roles in cultured meat production. In cultured meat production, bioinks have a significant effect on cell growth, differentiation, and mechanical stability. Hence, in this study, the characteristics of animal-, plant-, and marine-based bioinks were compared and analyzed, and the impact of each bioink on cultured meat production was evaluated. In particular, animal-based bioinks have the potential to produce cultured meat that is similar to conventional meat and are considered the most suitable bioinks for commercialization. Although plant- and marine-based bioinks are ecofriendly and have fewer religious restrictions, they are limited in terms of mechanical stability and consumer acceptance. Therefore, further research is required to develop and apply optimal animal-based bioinks for commercialization of cultured meat, particularly to improve its mechanical compatibility.
Collapse
Affiliation(s)
- Jin-Hee An
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resources Science Research Institute, Yesan 32439, Korea
| |
Collapse
|
2
|
Zuev YF, Derkach SR, Bogdanova LR, Voron’ko NG, Kuchina YA, Gubaidullin AT, Lunev IV, Gnezdilov OI, Sedov IA, Larionov RA, Latypova L, Zueva OS. Underused Marine Resources: Sudden Properties of Cod Skin Gelatin Gel. Gels 2023; 9:990. [PMID: 38131976 PMCID: PMC10742947 DOI: 10.3390/gels9120990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Nikolai G. Voron’ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Yulia A. Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Aidar T. Gubaidullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ivan V. Lunev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Oleg I. Gnezdilov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Igor A. Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Radik A. Larionov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia;
| |
Collapse
|