1
|
Angelini S, Gallipoli A, Montecchio D, Angelini F, Gianico A, Sbicego M, Braguglia CM. The strategic role of a mild hydrothermal pretreatment in enhancing anaerobic degradation of commercial bio-based compostable plastics associated to food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125332. [PMID: 40228474 DOI: 10.1016/j.jenvman.2025.125332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The expansion of Anaerobic Digestion (AD) technology to turn food waste (FW) into biogas will influence the management of the associated compostable bio-based plastics disposed of in the organic fraction of municipal waste collection. Waste processing aspects and bio-based plastic biodegradation profile in anaerobic conditions need research. The fate of some commercially available compostable items made of thermoplastic starch or PLA-based blends was investigated, by performing lab-scale disposal phase and thermophilic AD, with the integration of a mild hydrothermal pretreatment. For comprehensive understanding of bio-based plastics degradation, the biomethane production, structural (visual inspection, weight, dimension) and composition changes (solids, organics and carbohydrates content) were analyzed. Thermal pretreatment promoted thermoplastic starch-based product disintegration (40 ± 2 %) and the extraction of carbohydrates into the liquid eluate, with the potential to be transformed into high-value-added products through fermentative upgrading processes. A significant biodegradation of pretreated bio-based plastics up to 27.5 % and 40 %, respectively for thermoplastic starch- and polylactic acid (PLA)-based material, was observed. These preliminary results evidence the strategic role of the hydrothermal pretreatment in enhancing anaerobic degradation and the possibility to treat the bio-based plastics as FW co-substrate, avoiding the time and cost-consuming sorting phase in waste management plants.
Collapse
Affiliation(s)
- Stefania Angelini
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Agata Gallipoli
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Daniele Montecchio
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Francesca Angelini
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Andrea Gianico
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Michela Sbicego
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Camilla Maria Braguglia
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| |
Collapse
|
2
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T, Bracciale MP, Gabrielli S, Sarasini F, Tirillò J. Anaerobic Biodegradation of Polylactic Acid-Based Items: A Specific Focus on Disposable Tableware Products. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1186. [PMID: 40077410 PMCID: PMC11902089 DOI: 10.3390/ma18051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The viability of anaerobic degradation treatment as an end-of-life option for commercial disposable bioplastic tableware, typically certified as compostable, was assessed. Two types of polylactic acid-based items were selected and tested under mesophilic conditions (38 °C) for 155 days, until reaching a plateau. Advanced chemical characterization of the products was performed with a combination of analytical techniques, i.e., microscopy, spectroscopy, and thermogravimetry. Two methods for calculating the biodegradation degree of the products were discussed and compared, using the biogas generated in the test and the total organic carbon (TOC) removal, respectively. The method based on TOC removal, resulting in a biodegradation degree ranging from 80.5% to 88.9%, was considered to more accurately describe the process. Given the complexity of assessing the biodegradation of a bioplastic product, an effort was made to derive correlations among the chemical-physical composition of the product, the biodegradation conditions, and the biodegradation yields/kinetics, with an aim to describe the process comprehensively. Statistical tools were also applied to derive additional considerations regarding the influence of the polymeric blend and digestion parameters on the biodegradation of bioplastic products. The identified data clusters, which were found to be grouped by the digestion temperature and the type of bioplastic, indicated specific biodegradation features of the investigated materials.
Collapse
Affiliation(s)
- Marica Falzarano
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Alessandra Polettini
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Raffaella Pomi
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Andreina Rossi
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Tatiana Zonfa
- Department of Civil, Building and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.F.); (R.P.); (A.R.); (T.Z.)
| | - Maria Paola Bracciale
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.P.B.); (F.S.); (J.T.)
| | - Serena Gabrielli
- School of Science and Technology, Chemistry Division, Via Madonna delle Carceri (ChIP), University of Camerino, 62032 Camerino, Italy;
| | - Fabrizio Sarasini
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.P.B.); (F.S.); (J.T.)
| | - Jacopo Tirillò
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (M.P.B.); (F.S.); (J.T.)
| |
Collapse
|
3
|
Parveen N, Naik SVCS, Vanapalli KR, Sharma HB. Bioplastic packaging in circular economy: A systems-based policy approach for multi-sectoral challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173893. [PMID: 38889821 DOI: 10.1016/j.scitotenv.2024.173893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Bioplastics have long been publicized as a sustainable plastic packaging alternative; however, their widespread industrialization is still embryonic due to complex challenges spanning multiple sectors. This review critically analyses the bioplastic lifecycle and provides a holistic evaluation of both the opportunities and potential trade-offs along their value chain. Their lifecycle is divided into three sectors: 1) resources, extraction, and manufacturing, 2) product consumption which discusses availability, consumer perception, and marketing strategies, and 3) end-of-life (EoL) management which includes segregation, recycling, and disposal. In the production phase, the primary challenges include selection of suitable raw feedstocks and addressing the techno-economic constraints of manufacturing processes. To tackle these challenges, it is recommended to source sustainable feedstocks from innovative, renewable, and waste materials, adopt green synthesis mechanisms, and optimize processes for improved efficiency. The consumption phase encompasses challenges related to market availability, cost competitiveness, and consumer perception of bioplastics. Localizing feedstock sourcing and production, leveraging the economics of scale, and promoting market demand for recycled bioplastics can positively influence the market dynamics. Additionally, dispelling misconceptions about degradability through proper labeling, and employing innovative marketing strategies to enhance consumer perception of the mechanical performance and quality of bioplastics is crucial. During the EoL management phase, major challenges include inadequate awareness, inefficient segregation protocols, and bioplastics with diverse properties that are incompatible with existing waste management infrastructure. Implementing a standardized labeling system with clear representation of suitable EoL techniques and integrating sensors and machine learning-based sorting technologies will improve segregation efficiency. Further, establishing interconnected recycling streams that clearly define the EoL pathways for different bioplastics is essential to ensure circular waste management systems. Finally, designing a comprehensive systems-based policy framework that incorporates technical, economic, environmental, and social drivers is recommended to promote bioplastics as a viable circular packaging solution.
Collapse
Affiliation(s)
- Naseeba Parveen
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India
| | - S V Chinna Swami Naik
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India.
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Rangpo, Sikkim 737136, India
| |
Collapse
|
4
|
Yadav K, Nikalje GC. Comprehensive analysis of bioplastics: life cycle assessment, waste management, biodiversity impact, and sustainable mitigation strategies. PeerJ 2024; 12:e18013. [PMID: 39282116 PMCID: PMC11401513 DOI: 10.7717/peerj.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Bioplastics are emerging as a promising alternative to traditional plastics, driven by the need for more sustainable options. This review article offers an in-depth analysis of the entire life cycle of bioplastics, from raw material cultivation to manufacturing and disposal, with a focus on environmental impacts at each stage. It emphasizes the significance of adopting sustainable agricultural practices and selecting appropriate feedstock to improve environmental outcomes. The review highlights the detrimental effects of unsustainable farming methods, such as pesticide use and deforestation, which can lead to soil erosion, water pollution, habitat destruction, and increased greenhouse gas emissions. To address these challenges, the article advocates for the use of efficient extraction techniques and renewable energy sources, prioritizing environmental considerations throughout the production process. Furthermore, the methods for reducing energy consumption, water usage, and chemical inputs during manufacturing by implementing eco-friendly technologies. It stresses the importance of developing robust disposal systems for biodegradable materials and supports recycling initiatives to minimize the need for new resources. The holistic approach to sustainability, including responsible feedstock cultivation, efficient production practices, and effective end-of-life management. It underscores the need to evaluate the potential of bioplastics to reduce plastic pollution, considering technological advancements, infrastructure development, and increased consumer awareness. Future research should focus on enhancing production sustainability, understanding long-term ecological impacts, and advancing bioplastics technology for better performance and environmental compatibility. This comprehensive analysis of bioplastics' ecological footprint highlights the urgent need for sustainable solutions in plastic production.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ganesh Chandrakant Nikalje
- Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, University of Mumbai, Ulhasnagar, India
| |
Collapse
|
5
|
Falzarano M, Marìn A, Cabedo L, Polettini A, Pomi R, Rossi A, Zonfa T. Alternative end-of-life options for disposable bioplastic products: Degradation and ecotoxicity assessment in compost and soil. CHEMOSPHERE 2024; 362:142648. [PMID: 38906189 DOI: 10.1016/j.chemosphere.2024.142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Four different end-of-life options for disposable bioplastic cups were investigated and compared based on their environmental implications. Two products with distinct polymeric composition were tested simulating the following scenarios at laboratory scale: i) industrial composting (180 days at 58 °C); ii) anaerobic digestion followed by industrial composting (45 days at 55 °C and 180 days at 58 °C); iii) anaerobic digestion followed by direct digestate use on soil for agricultural purposes (45 days at 55 °C and 180 days at 25 °C); iv) uncontrolled release into a soil environment (180 days at 25 °C). Ecotoxicity tests were run at the end of each experiment to investigate the effects of the materials on three main groups of terrestrial model organisms: plants, earthworms and nitrifying bacteria. Complete biodegradation of the cups was observed in 180 days in the scenarios involving composting environment. A low degree of biodegradation (22.9 ± 4.5%) of the digestates in soil was observed, warning for a potential micro-bioplastics discharge into the environment. No degradation was observed for the cups in soil during the same testing period. Ecotoxicity tests revealed a negative effect on plants biomass growth across all samples, which was 17-30% lower compared to the blank sample. The experimental campaign highlighted the need for a systematic assessment of controlled treatment of bioplastics, as well as the need for a harmonized legislative framework.
Collapse
Affiliation(s)
- M Falzarano
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184, Roma, Italy.
| | - A Marìn
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat S/n, 12071, Castelló, Spain
| | - L Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat S/n, 12071, Castelló, Spain; CEBIMAT LAB S.L, ESPAITEC, Universitat Jaume I, Av. Vicent Sos Baynat S/n, 12071, Castelló, Spain
| | - A Polettini
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184, Roma, Italy
| | - R Pomi
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184, Roma, Italy
| | - A Rossi
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184, Roma, Italy
| | - T Zonfa
- DICEA Department, Sapienza University of Rome, Via Eudossiana 18, 00184, Roma, Italy
| |
Collapse
|
6
|
Peng W, Nie R, Lü F, Zhang H, He P. Biodegradability of PBAT/PLA coated paper and bioplastic bags under anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:218-228. [PMID: 38064993 DOI: 10.1016/j.wasman.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Poly (lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) are two of biodegradable plastics with the highest production capacities in 2021. Bioplastic waste management can be easily integrated with organic waste management, especially when bioplastics are used as food packaging material, since they are potentially biodegradable. The aim of this study was to assess the biodegradability of biodegradable polymer-coated paper (BPCP) and bioplastic bags made from PBAT/PLA blend during mesophilic and thermophilic anaerobic digestion (AD) and to reveal the changes in the physicochemical properties of the bioplastics. BPCP obtained 155 NmL-CH4/g VS and 307.3 NmL-CH4/g VS under mesophilic and thermophilic conditions, respectively, but left bioplastic film residues. The bioplastic bags did not exhibit significant biodegradation during the AD processes. 1H NMR results indicated that the ratio of PLA to PBAT decreased significantly after AD of the BPCP film and that PLA monomers were formed from the bioplastic bags, leading to a decrease in the hydrophobicity on the surfaces of the materials. Methanoculleus was found to be enriched on the bioplastic surface after mesophilic AD. From the perspective of coupling bioplastic waste management with the food waste management, the incorporation of BPCP into the AD reactor not only enhances system stability and methane production to a greater extent than biodegradable plastic bags but also raises concerns regarding the residual biofilm when utilizing the digestate for direct land applications.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Nie
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Namphonsane A, Amornsakchai T, Chia CH, Goh KL, Thanawan S, Wongsagonsup R, Smith SM. Development of Biodegradable Rigid Foams from Pineapple Field Waste. Polymers (Basel) 2023; 15:2895. [PMID: 37447540 DOI: 10.3390/polym15132895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Pineapple materials sourced from agricultural waste have been employed to process novel bio-degradable rigid composite foams. The matrix for the foam consisted of starch extracted from pineapple stem, known for its high amylose content, while the filler comprised non-fibrous cellulosic materials sourced from pineapple leaf. In contrast to traditional methods that involve preparing a batter, this study adopted a unique approach where the starch gel containing glycerol were first formed using a household microwave oven, followed by blending the filler into the gel using a two-roll mill. The resulting mixture was then foamed at 160 °C using a compression molding machine. The foams displayed densities ranging from 0.43-0.51 g/cm3 and exhibited a highly amorphous structure. Notably, the foams demonstrated an equilibrium moisture content of approximately 8-10% and the ability to absorb 150-200% of their own weight without disintegration. Flexural strengths ranged from 1.5-4.5 MPa, varying with the filler and glycerol contents. Biodegradability tests using a soil burial method revealed complete disintegration of the foam into particles measuring 1 mm or smaller within 15 days. Moreover, to showcase practical applications, an environmentally friendly single-use foam tray was fabricated. This novel method, involving gel formation followed by filler blending, sets it apart from previous works. The findings highlight the potential of pineapple waste materials for producing sustainable bio-degradable foams with desirable properties and contribute to the field of sustainable materials.
Collapse
Affiliation(s)
- Atitiya Namphonsane
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- TEAnity Team Co., Ltd., 40/494 Soi Navamintra 111, Khet Bueng Kum, Bangkok 10230, Thailand
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kheng Lim Goh
- Mechanical Design and Manufacturing Engineering, Newcastle University in Singapore, 172A Ang Mo Kio Avenue 8 #05-01, SIT@NYP Building, Singapore 567739, Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Sombat Thanawan
- Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Rungtiwa Wongsagonsup
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Siwaporn Meejoo Smith
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|