1
|
Jin X, Wu Y, Chen Z, Chen Z, Zhou F, Jin Q, Wu S, Feng Y, Ma J, Guo X, Chang J, Yang C, Song B. Bioinspired nanofiber dressings with counter-transport of exudate and drug for treating heavily exuding wounds. Biomaterials 2025; 318:123115. [PMID: 39884128 DOI: 10.1016/j.biomaterials.2025.123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Heavily exuding wounds are difficult to heal due to the accumulation of a large amount of exudates and the difficulty in efficient delivery of drugs by conventional wound dressings. Herein, inspired by the microstructure and function of octopus sucker (OS) and tree trunk (TT), we propose a bioinspired strategy to fabricate novel bioinspired OS&TT bilayered wound dressing, assembled by a lower OS-like nanofiber membrane with concave convex arrays and an upper TT-like nanofiber sponge with vertically aligned pores. The integration of bioinspired concave arrays and vertically aligned pores endows the bioinspired OS&TT dressing with dual vertical suction property, enabling effective drainage of significant amount of accumulated liquid. Moreover, the bioinspired convex arrays facilitate distinct drug reverse delivery, achieving a drug delivery efficiency exceeding 88.27 %. In vivo heavily exuding wound treatment results indicate that, the bioinspired OS&TT dressing can alleviate tissue edema, decrease the contents of proinflammatory cytokines, and accelerate wound healing due to the unique dual vertical suction of exudates. When treating the bacteria-infected wound, benefiting from the reverse delivery of antimicrobial ε-polylysine to efficiently kill bacteria, the bioinspired OS&TT dressing shows a better wound healing effect than the dressing with inefficient drug delivery capacity.
Collapse
Affiliation(s)
- Xuening Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yihao Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zizhao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Zheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Fujin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Qishu Jin
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Shuting Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jianfeng Ma
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xiaohui Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Ranjan S, Choudhary P, Shivalkar S, Dwivedi S, Singh S. Potential of hyaluronic acid and collagen-based scaffolds in promoting stem cell neuronal differentiation for neuroregenerative therapies: A review. Int J Biol Macromol 2025; 309:142981. [PMID: 40216130 DOI: 10.1016/j.ijbiomac.2025.142981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Stem cell therapy has revolutionized neurodegenerative disease treatment by presenting promising medical applications. Despite their potential, stem cell therapy remains constrained by various limitations, including low differentiation efficiency, difficulties in guiding differentiation, proliferation control, shorter half-life of growth factors, experimental reproducibility, etc. The cellular niche environment is pivotal in effective differentiation of stem cells. Neural regeneration ventures require biomaterial-based 3D scaffolds to simulate in-vivo tissue to solve the niche environment problem. Recent breakthroughs in neural regeneration have led to the development of a biomimetic scaffolds made of Hyaluronic acid (HA) and collagen (COL) that imitate the CNS's extracellular matrix (ECM) for better neural regeneration and repair. HA and COL based scaffold creates a favourable microenvironment for cellular migration, proliferation and survival of the embedded stem cells and promotes neural regeneration. HA regulates cellular activities while COL contributes in healing CNS injuries. Therefore, the utilization of HA-COL based scaffolds is appropriate for regulating cellular responses and behaviour for neural regeneration. This review investigates the synergy between HA and COL in the context of neural-specific applications for repair, regeneration, and recovery as well as augmentation of bioactivity through fabrication techniques such as 3D bioprinting, electrospinning, etc. for neural tissue regeneration.
Collapse
Affiliation(s)
- Sneha Ranjan
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj 211015, Uttar Pradesh, India.
| | | | - Saurabh Shivalkar
- National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India.
| | - Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj 211015, Uttar Pradesh, India.
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Devghat, Jhalwa, Prayagraj 211015, Uttar Pradesh, India.
| |
Collapse
|
3
|
Habiburrohman MR, Jamilludin MA, Cahyati N, Herdianto N, Yusuf Y. Fabrication and in vitro cytocompatibility evaluation of porous bone scaffold based on cuttlefish bone-derived nano-carbonated hydroxyapatite reinforced with polyethylene oxide/chitosan fibrous structure. RSC Adv 2025; 15:5135-5150. [PMID: 39963456 PMCID: PMC11831101 DOI: 10.1039/d4ra08457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
A novel porous bone scaffold based on nano-carbonated hydroxyapatite reinforced with fibrous-like structured polyethylene oxide/chitosan network (nCHA/PEO/CS) was introduced and fabricated via freeze-drying. Prior to this, the nCHA was synthesized through a hydrothermal reaction based on cuttlefish bone (CFB, Sepia officinalis). The raw cuttlefish bone (raw-CFB) was first decomposed to obtain cuttlefish bone-derived calcium oxide (CaO-CFB) by calcination at 1000 °C, which was used for synthesizing nCHA. The chemical composition analysis showed that the nCHA formed AB-type CHA with a high carbonate content of 7.38 wt%, which is in the range of carbonate content in native bone (2-9 wt%). The Ca/P molar ratio of nCHA was 1.712, very close to the Ca/P of biological apatite of 1.71. Morphological analysis revealed that nCHA consists of nanosized particles, potentially offering a large surface area to volume to promote ion exchange and cell interaction. The excellent physicochemical and morphological properties of nCHA proposed suitability as a bone scaffold precursor combined with PEO and CS. The nCHA/PEO/CS scaffolds were freeze-dried with varying PEO/CS concentrations. Physicochemical analysis indicated that increasing the PEO/CS concentration decreased the crystallinity of the scaffold, causing it to be lower than the nCHA crystallinity, which may be beneficial for cell growth. Morphological analysis revealed that the scaffold structure comprised nCHA cross-linked within a fibrous-like structured PEO/CS network, which appropriately mimics the fibrous structure of extracellular matrix (ECM) in natural bone. However, the nCHA/PEO/CS-11 scaffold formed more appropriate pores with suitable porosity for cell development, blood vessel formation, and nutrient perfusion. The nCHA/PEO/CS-11 scaffold also demonstrated sufficient compressive strength and good swelling behavior, which may favor bone regeneration. The nCHA/PEO/CS-11 scaffold demonstrated high cytocompatibility and facilitated the adherence of MC3T3E1 cells on the scaffold surface. The nCHA/PEO/CS-11 scaffold also promoted cell osteogenic differentiation. Owing to its desirable and suitable characteristics, the nCHA/PEO/CS-11 scaffold is promising in bone tissue engineering.
Collapse
Affiliation(s)
- Musyafa Riziq Habiburrohman
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Muhammad Amir Jamilludin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Nilam Cahyati
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Nendar Herdianto
- Research Centre for Advanced Material, National Research and Innovation Agency (BRIN) South Tangerang 15314 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| |
Collapse
|
4
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
5
|
Sreena R, Raman G, Manivasagam G, Nathanael AJ. Bioactive glass-polymer nanocomposites: a comprehensive review on unveiling their biomedical applications. J Mater Chem B 2024; 12:11278-11301. [PMID: 39392456 DOI: 10.1039/d4tb01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Most natural and synthetic polymers are promising materials for biomedical applications because of their biocompatibility, abundant availability, and biodegradability. Their properties can be tailored according to the intended application by fabricating composites with other polymers or ceramics. The incorporation of ceramic nanoparticles such as bioactive glass (BG) and hydroxyapatite aids in the improvement of mechanical and biological characteristics and alters the degradation kinetics of polymers. BG can be used in the form of nanoparticles, nanofibers, scaffolds, pastes, hydrogels, or coatings and is significantly employed in different applications. This biomaterial is highly preferred because of its excellent biocompatibility, bone-stimulating activity, and favourable mechanical and degradation characteristics. Different compositions of nano BG are incorporated into the polymer system and studied for positive results such as enhanced bioactivity, better cell adherence, and proliferation rate. This review summarizes the fabrication and the progress of natural/synthetic polymer-nano BG systems for biomedical applications such as drug delivery, wound healing, and tissue engineering. The challenges and the future perspectives of the composite system are also addressed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea.
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| | - A Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
7
|
Salvante ERG, Popoiu AV, Barb AC, Cosma AA, Fenesan MP, Saxena AK, Popoiu TA, Boia ES, Stanciulescu MC, Caplar BD, Dorobantu FR, Cimpean AM. Artificial Intelligence (AI) Based Analysis of In Vivo Polymers and Collagen Scaffolds Inducing Vascularization. In Vivo 2024; 38:620-629. [PMID: 38418141 PMCID: PMC10905450 DOI: 10.21873/invivo.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Biomaterials are essential in modern medicine, both for patients and research. Their ability to acquire and maintain functional vascularization is currently debated. The aim of this study was to evaluate the vascularization induced by two collagen-based scaffolds (with 2D and 3D structures) and one non-collagen scaffold implanted on the chick embryo chorioallantoic membrane (CAM). MATERIALS AND METHODS Classical stereomicroscopic image vascular assessment was enhanced with the IKOSA software by using two applications: the CAM assay and the Network Formation Assay, evaluating the vessel branching potential, vascular area, as well as tube length and thickness. RESULTS Both collagen-based scaffolds induced non-inflammatory angiogenesis, but the non-collagen scaffold induced a massive inflammation followed by inflammatory-related angiogenesis. Vessels branching points/Region of Interest (Px^2) and Vessel branching points/Vessel total area (Px^2), increased exponentially until day 5 of the experiment certifying a sustained and continuous angiogenic process induced by 3D collagen scaffolds. CONCLUSION Collagen-based scaffolds may be more suitable for neovascularization compared to non-collagen scaffolds. The present study demonstrates the potential of the CAM model in combination with AI-based software for the evaluation of vascularization in biomaterials. This approach could help to reduce and replace animal experimentation in the pre-screening of biomaterials.
Collapse
Affiliation(s)
| | - Anca Voichita Popoiu
- Emergency Hospital for Children Louis Turcanu, Timisoara, Romania
- Center of Expertise for Rare Vascular Disease in Children, Louis Turcanu Children Hospital, Timisoara, Romania
| | - Alina Cristina Barb
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- OncoHelp Hospital, Timisoara, Romania
| | - Andrei Alexandru Cosma
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- OncoHelp Hospital, Timisoara, Romania
| | - Mihaela Pasca Fenesan
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- OncoHelp Hospital, Timisoara, Romania
| | - Amulya K Saxena
- Department of Pediatric Surgery, Chelsea Children's Hospital, Chelsea and Westminster Hospital NHS Fdn Trust, Imperial College London, London, U.K
| | - Tudor Alexandru Popoiu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Eugen Sorin Boia
- Center of Expertise for Rare Vascular Disease in Children, Louis Turcanu Children Hospital, Timisoara, Romania
- Department XV of Orthopaedics, Traumatology, Urology and Medical Imaging, Discipline of Radiology and Medical Imaging, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Maria Corina Stanciulescu
- Center of Expertise for Rare Vascular Disease in Children, Louis Turcanu Children Hospital, Timisoara, Romania
- Department XV of Orthopaedics, Traumatology, Urology and Medical Imaging, Discipline of Radiology and Medical Imaging, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Borislav Dusan Caplar
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Florica Ramona Dorobantu
- Department of Neonatology, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Anca Maria Cimpean
- Center of Expertise for Rare Vascular Disease in Children, Louis Turcanu Children Hospital, Timisoara, Romania;
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
8
|
Kérourédan O, Washio A, Handschin C, Devillard R, Kokabu S, Kitamura C, Tabata Y. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering. Biomed Mater 2024; 19:025038. [PMID: 38324892 DOI: 10.1088/1748-605x/ad270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Despite significant advances in the management of patients with oral cancer, maxillofacial reconstruction after ablative surgery remains a clinical challenge. In bone tissue engineering, biofabrication strategies have been proposed as promising alternatives to solve issues associated with current therapies and to produce bone substitutes that mimic both the structure and function of native bone. Among them, laser-assisted bioprinting (LAB) has emerged as a relevant biofabrication method to print living cells and biomaterials with micrometric resolution onto a receiving substrate, also called 'biopaper'. Recent studies have demonstrated the benefits of prevascularization using LAB to promote vascularization and bone regeneration, but mechanical and biological optimization of the biopaper are needed. The aim of this study was to apply gelatin-sheet fabrication process to the development of a novel biopaper able to support prevascularization organized by LAB for bone tissue engineering applications. Gelatin-based sheets incorporating bioactive glasses (BGs) were produced using various freezing methods and crosslinking (CL) parameters. The different formulations were characterized in terms of microstructural, physical, mechanical, and biological properties in monoculture and coculture. Based on multi-criteria analysis, a rank scoring method was used to identify the most relevant formulations. The selected biopaper underwent additional characterization regarding its ability to support mineralization and vasculogenesis, its bioactivity potential andin vivodegradability. The biopaper 'Gel5wt% BG1wt%-slow freezing-CL160 °C 24 h' was selected as the best candidate, due to its suitable properties including high porosity (91.69 ± 1.55%), swelling ratio (91.61 ± 0.60%), Young modulus (3.97 × 104± 0.97 × 104Pa) but also its great cytocompatibility, osteogenesis and bioactivity properties. The preorganization of human umbilical vein endothelial cell using LAB onto this new biopaper led to the formation of microvascular networks. This biopaper was also shown to be compatible with 3D-molding and 3D-stacking strategies. This work allowed the development of a novel biopaper adapted to LAB with great potential for vascularized bone biofabrication.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, U1026 BIOTIS, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- Faculty of Dentistry, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie bucco-dentaire, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR MOC-Maladies Osseuses Constitutionnelles, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR O-Rares-Maladies Rares Orales et Dentaires, Place Amélie Raba Léon, Bordeaux 33076, France
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Charles Handschin
- ART BioPrint, INSERM, U1026 BIOTIS, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
| | - Raphaël Devillard
- INSERM, U1026 BIOTIS, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- Faculty of Dentistry, University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33076, France
- CHU de Bordeaux, Pôle de Médecine et Chirurgie bucco-dentaire, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR MOC-Maladies Osseuses Constitutionnelles, Place Amélie Raba Léon, Bordeaux 33076, France
- CHU de Bordeaux, CCMR O-Rares-Maladies Rares Orales et Dentaires, Place Amélie Raba Léon, Bordeaux 33076, France
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Science of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|