1
|
Li S, Feng N, Sun M, Sha Y, Xin X, Zhao H, Li H. Liquid crystal-mediated self-assembly of copper nanoclusters with induced circular dichroism and amplified circularly polarized luminescence. NANOSCALE 2024; 16:18998-19005. [PMID: 39297810 DOI: 10.1039/d4nr03125c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Elucidating the mechanism of chiral transfer is key to regulating chiral expression and generalizing the structure-property relationship of chiral functional systems. However, it is still an important challenge to select novel building blocks to achieve chiral induction, chiral transfer and chiral modulation. Liquid crystals (LCs) can be considered as promising smart soft materials due to their responsiveness and adaptability. Confining chiral metal nanoclusters (NCs) in an achiral LC phase to construct chiral LCs provides an expanded strategy for the self-assembly of chiral metal NCs in different matrices. Herein, chiral glutathione-stabilized copper NCs (G-SH-Cu NCs)/polyoxyethylene tert-octylphenyl ether (TX-100) LCs were constructed and systematically investigated. The results showed that the introduction of G-SH-Cu NCs into TX-100 LCs induced the generation of supramolecular chirality. More interestingly, the circular dichroism (CD) handedness can be controlled by changing the amount of TX-100 or G-SH-Cu NCs; when the ratio of G-SH-Cu NCs and TX-100 was proportionally matched, the strength of the noncovalent interactions was sufficient to induce chiral inversion. Meanwhile, TX-100 LCs provide effective confinement of G-SH-Cu NCs, which improves the expression of asymmetry at the aggregation level and induces a 2-fold enhancement of the circularly polarized luminescence (CPL) signal. This work realizes the spatial amplification of chirality through dopants in LCs, which provides an effective method for accurately regulating the supramolecular chirality of metal NCs in the LC phase.
Collapse
Affiliation(s)
- Shulin Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, People's Republic of China.
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, People's Republic of China.
| | - Mengdi Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, People's Republic of China.
| | - Yuxiang Sha
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, People's Republic of China.
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, People's Republic of China.
| | - Hui Zhao
- ShanDong Chambroad Holding Group Co., Ltd, Binzhou, 256600, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, People's Republic of China.
| |
Collapse
|
2
|
Umezane S, Ono T, Kawasaki R, Ikeda A. Water Solubilization and Guest Molecule-Induced Fluorescence Changes of Porous Host Molecules via Complexing with Polysaccharide or Polypeptide. Chem Asian J 2024; 19:e202301015. [PMID: 38093526 DOI: 10.1002/asia.202301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Indexed: 12/22/2023]
Abstract
To detect small aromatic molecules in water, we prepared functional host molecules based on water-soluble N,N'-bis(2-aminobenzophenone)-1,4,5,8-naphthalenetetracarboxylic diimide (1) and a solubilizing agent using a high-speed vibration milling apparatus. The fluorescence response of host 1-solubilizing agent complexes before and after extraction of small aromatic guest molecules was large and the fluorescence maxima were dependent on the small aromatic guest molecules.
Collapse
Affiliation(s)
- Sota Umezane
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Fukuoka, 819-0395, Japan
- Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
3
|
Zeng H, Wang Y, Li C, Ren J, Lu R, Zhang H, Wang X, Lv X, Yu H, Liang T, Cheng C. Photo-responsive nanoporous liquid crystal polymer films for selective dye adsorption. RSC Adv 2024; 14:863-871. [PMID: 38174275 PMCID: PMC10759169 DOI: 10.1039/d3ra06791b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Photo-responsive nanoporous polymer films (AZOF-R(NC6)) have been developed by a template method based on a hydrogen-bonding supramolecular liquid crystal (LC) and a light-sensitive azobenzene LC crosslinker in this work. Anionic nanopores were obtained after the removal of template NC6 using KOH solution. The AZOF-R(NC6) demonstrates charge-selective dye adsorption and the maximum adsorption capacity for Rh6G is 504.6 mg g-1. The AZOF-R(NC6) film without UV light treatment shows a 32% higher adsorption capacity for Rh6G than the AZOF-R(NC6) film treated with UV light within the initial 10 min. In addition, UV light can trigger the release of the adsorbed dye from the polymer film due to the pore size change arising from the trans-cis isomerization. Besides, the used polymer film can be effectively regenerated using a HCl solution. Such functional polymer films with highly ordered nanopores and photo-responsive properties hold great promise in selective adsorption and mass separations.
Collapse
Affiliation(s)
- Hongju Zeng
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
- Chengdu BOE Display Sci-tech Co. Ltd. Chengdu Sichuan 610200 PR China
| | - Yun Wang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
| | - Changxiang Li
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
| | - Junjie Ren
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
| | - Runzi Lu
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
| | - Huiyao Zhang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
| | - Xi Wang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission Chengdu Sichuan 610200 PR China
| | - Hairong Yu
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission Chengdu Sichuan 610200 PR China
| | - Ting Liang
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission Chengdu Sichuan 610200 PR China
| | - Changjing Cheng
- College of Chemistry and Environment, Southwest Minzu University Chengdu Sichuan 610200 PR China
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission Chengdu Sichuan 610200 PR China
| |
Collapse
|
4
|
Zeng H, Liang T, Zhang H, Wang Y, Wen J, Yu HR, Cheng C. Anisotropic Dyes Adsorption by Templated Smectic Nanoporous Polymer Films: Pore Size vs Pore Charges Affecting the Adsorption. NEW J CHEM 2022. [DOI: 10.1039/d2nj01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective 2-dimentional (2D) nanoporous polymer films have been developed by a templating method based on hydrogen-bonding supramolecular liquid crystals (LCs) containing benzoic acid and pyridine groups (6OBA·NC6·C6H). The smectic lamellar...
Collapse
|
5
|
Lugger J, Mulder DJ, Sijbesma R, Schenning A. Nanoporous Polymers Based on Liquid Crystals. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E104. [PMID: 29324669 PMCID: PMC5793602 DOI: 10.3390/ma11010104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
In the present review, we discuss recent advances in the field of nanoporous networks based on polymerisable liquid crystals. The field has matured in the last decade, yielding polymers having 1D, 2D, and 3D channels with pore sizes on the nanometer scale. Next to the current progress, some of the future challenges are presented, with the integration of nanoporous membranes in functional devices considered as the biggest challenge.
Collapse
Affiliation(s)
- Jody Lugger
- Laboratory of Supramolecular Polymer Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Dirk Jan Mulder
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Dutch Polymer Institute, P.O. Box 902, 5600 AZ Eindhoven, The Netherlands.
| | - Rint Sijbesma
- Laboratory of Supramolecular Polymer Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Albert Schenning
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
6
|
Cho J, Ishida Y. Macroscopically Oriented Porous Materials with Periodic Ordered Structures: From Zeolites and Metal-Organic Frameworks to Liquid-Crystal-Templated Mesoporous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605974. [PMID: 28449264 DOI: 10.1002/adma.201605974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/08/2017] [Indexed: 06/07/2023]
Abstract
Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented.
Collapse
Affiliation(s)
- Joonil Cho
- 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
7
|
Goossens K, Lava K, Bielawski CW, Binnemans K. Ionic Liquid Crystals: Versatile Materials. Chem Rev 2016; 116:4643-807. [PMID: 27088310 DOI: 10.1021/cr400334b] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.
Collapse
Affiliation(s)
- Karel Goossens
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) , Ulsan 689-798, Republic of Korea.,Department of Chemistry, KU Leuven , Celestijnenlaan 200F, P.O. Box 2404, B-3001 Heverlee, Belgium
| | - Kathleen Lava
- Department of Chemistry, KU Leuven , Celestijnenlaan 200F, P.O. Box 2404, B-3001 Heverlee, Belgium.,Department of Organic and Macromolecular Chemistry, Ghent University , Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) , Ulsan 689-798, Republic of Korea.,Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Republic of Korea
| | - Koen Binnemans
- Department of Chemistry, KU Leuven , Celestijnenlaan 200F, P.O. Box 2404, B-3001 Heverlee, Belgium
| |
Collapse
|
8
|
van Kuringen HPC, Mulder DJ, Beltran E, Broer DJ, Schenning APHJ. Nanoporous polymer particles made by suspension polymerization: spontaneous symmetry breaking in hydrogen bonded smectic liquid crystalline droplets and high adsorption characteristics. Polym Chem 2016. [DOI: 10.1039/c6py00865h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile and scalable suspension polymerization method is reported to synthesize nanoporous polymer particles.
Collapse
Affiliation(s)
- H. P. C. van Kuringen
- Department of Functional Organic Materials and Devices
- Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - D. J. Mulder
- Department of Functional Organic Materials and Devices
- Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - E. Beltran
- Merck Chilworth Technical Centre
- University Parkway
- Southampton
- UK
| | - D. J. Broer
- Department of Functional Organic Materials and Devices
- Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - A. P. H. J. Schenning
- Department of Functional Organic Materials and Devices
- Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
9
|
van Kuringen HPC, Leijten ZJWA, Gelebart AH, Mulder DJ, Portale G, Broer DJ, Schenning APHJ. Photoresponsive Nanoporous Smectic Liquid Crystalline Polymer Networks: Changing the Number of Binding Sites and Pore Dimensions in Polymer Adsorbents by Light. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Huub P. C. van Kuringen
- Department of Functional
Organic Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Dutch Polymer Institute (DPI), PO Box
902, 5600 AX, Eindhoven, The Netherlands
| | - Zino J. W. A. Leijten
- Department of Functional
Organic Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Anne Hélène Gelebart
- Department of Functional
Organic Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dirk J. Mulder
- Department of Functional
Organic Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Dutch Polymer Institute (DPI), PO Box
902, 5600 AX, Eindhoven, The Netherlands
| | - Giuseppe Portale
- DUBBLE-CRG, Netherlands Organization for
Scientific Research (NWO), European Synchrotron Radiation Facility (ESRF), Grenoble F-38043, France
| | - Dirk J. Broer
- Department of Functional
Organic Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Albertus P. H. J. Schenning
- Department of Functional
Organic Materials and Devices, Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Yang X, Li X, Chen B, Wu L, Zhang L, Zheng L, Tung C. Stereoselective Photochemical Reaction of Cyclohexyl Phenyl Ketone within Lytropic Liquid Crystals Formed by Chiral Ionic Liquids. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Broer DJ, Bastiaansen CMW, Debije MG, Schenning APHJ. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew Chem Int Ed Engl 2012; 51:7102-9. [PMID: 22588947 DOI: 10.1002/anie.201200883] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Indexed: 11/10/2022]
Abstract
Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively.
Collapse
Affiliation(s)
- Dirk J Broer
- Laboratory of Functional Organic Materials and Devices, Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
| | | | | | | |
Collapse
|
12
|
Broer DJ, Bastiaansen CMW, Debije MG, Schenning APHJ. Funktionelle organische Materialien auf der Basis polymerisierter flüssigkristalliner Monomere: supramolekulare wasserstoffverbrückte Systeme. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200883] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Ishida Y, Sakata H, Achalkumar AS, Yamada K, Matsuoka Y, Iwahashi N, Amano S, Saigo K. Guest-Responsive Covalent Frameworks by the Cross-Linking of Liquid-Crystalline Salts: Tuning of Lattice Flexibility by the Design of Polymerizable Units. Chemistry 2011; 17:14752-62. [DOI: 10.1002/chem.201102422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Indexed: 11/08/2022]
|