1
|
Flakina AM, Nazarov DI, Faraonov MA, Yakushev IA, Kuzmin AV, Khasanov SS, Zverev VN, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Single-Ion Magnetism of the [Dy III(hfac) 4] - Anions in the Crystalline Semiconductor {TSeT 1.5} ●+[Dy III(hfac) 4] - Containing Weakly Dimerized Stacks of Tetraselenatetracene. Int J Mol Sci 2024; 25:8068. [PMID: 39125638 PMCID: PMC11311655 DOI: 10.3390/ijms25158068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of {TSeT1.5}●+[DyIII(hfac)4]- (1) salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior. A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac- anions in [DyIII(hfac)4]-, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT●+ paramagnetic species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1. It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.
Collapse
Affiliation(s)
- Alexandra M. Flakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Dmitry I. Nazarov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Maxim A. Faraonov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Ilya A. Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V. Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Vladimir N. Zverev
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V. Konarev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| |
Collapse
|
2
|
Kumar P, Swain A, Acharya J, Li Y, Kumar V, Rajaraman G, Colacio E, Chandrasekhar V. Synthesis, Structure, and Zero-Field SMM Behavior of Homometallic Dy2, Dy4, and Dy6 Complexes. Inorg Chem 2022; 61:11600-11621. [PMID: 35849822 DOI: 10.1021/acs.inorgchem.2c01041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, structure, and magnetic properties of three DyIII complexes of different nuclearity, [Dy2(H2L)2(NO3)] [NO3]·2H2O·CH3OH (1), [Dy4(HL)2(piv)4(OH)2] (2), and [Dy6(H2L)3(μ3-OH)(μ3-CO3)3(CH3OH)4(H2O)8] 5Cl·3H2O (3) [(H4L) = 6-((bis(2-hydroxyethyl)amino)-N'-(2-hydroxybenzylidene)picolinohydrazide)], are described. This variety of complexes with the same ligand could be obtained by playing with the metal-to-ligand molar ratio, the type of DyIII salt, the kind of base, and the presence/absence of coligand. 1 is a dinuclear complex, while 2 is a tetranuclear assembly with a butterfly-shaped topology. 3 is a homometallic hexanuclear complex that exhibits a propeller-shaped topology. Interestingly, in this complex 3, three atmospheric carbon dioxide molecules are trapped in the form of carbonate ions, which assist in holding the hexanuclear complex together. All of the complexes reveal a slow relaxation of magnetization even in zero applied field. Complex 1 is a zero-field SMM with an effective energy barrier (Ueff) of magnetization reversal equal to 87(1) K and a relaxation time of τ0 = 6.4(3) × 10-9 s. Under an applied magnetic field of 0.1 T, these parameters change to Ueff = 101(3) K, τ0 = 2.5(1) × 10-9 s. Complex 2 shows zero-field SMM behavior with Ueff = 31(2) K, τ0 = 4.2(1) × 10-7 s or τ01 = 2(1) × 10-7 s, Ueff1 = 37(8) K, τ02 = 5(6) × 10-5 s, and Ueff2 = 8(4) by considering two Orbach relaxation processes, while 3, also a zero-field SMM, shows a double relaxation of magnetization [Ueff1 = 62.4(3) K, τ01 = 4.6(3) × 10-8 s, and Ueff1 = 2(1) K, τ02 = 4.6(2) × 10-5 s]. The ab initio calculations indicated that in these complexes, the Kramer's ground doublet is characterized by an axial g-tensor with the prevalence of the mJ = ±15/2 component, as well as that due to the weak magnetic coupling between the metal centers, the magnetic relaxation, which is dominated by the single DyIII centers rather than by the exchange-coupled states, takes place via Raman/Orbach or TA-QTM. Moreover, theoretical calculations support a toroidal magnetic state for complex 2.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Yanling Li
- Sorbonne Universit Institut Parisien de Chimie Molculaire, CNRS UMR 8232, 4 place Jussieu, 75252 Paris cedex 5, France
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Enrique Colacio
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500 107, India
| |
Collapse
|
3
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical‐Bridged Ln
4
Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Alexandros A. Kitos
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
4
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical-Bridged Ln 4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021; 60:24206-24213. [PMID: 34427984 DOI: 10.1002/anie.202110813] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/05/2022]
Abstract
Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.
Collapse
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
5
|
Bellucci L, Labella L, Marchetti F, Pineider F, Poneti G, Samaritani S. Magnetic relaxation in dysprosium and terbium 1D-zigzag coordination chains having only 4,4′-bipyridine as connector. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Redox Modulation of Field-Induced Tetrathiafulvalene-Based Single-Molecule Magnets of Dysprosium. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6030034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complexes [Dy2(tta)6(H2SQ)] (Dy-H2SQ) and [Dy2(tta)6(Q)]·2CH2Cl2 (Dy-Q) (tta− = 2-thenoyltrifluoroacetonate) were obtained from the coordination reaction of the Dy(tta)3·2H2O units with the 2,2′-benzene-1,4-diylbis(6-hydroxy-4,7-di-tert-butyl-1,3-benzodithiol-2-ylium-5-olate ligand (H2SQ) and its oxidized form 2,2′-cyclohexa-2,5-diene-1,4-diylidenebis(4,7-di-tert-butyl-1,3-benzodithiole-5,6-dione (Q). The chemical oxidation of H2SQ in Q induced an increase in the coordination number from 7 to 8 around the DyIII ions and by consequence a modulation of the field-induced Single-Molecule Magnet behavior. Computational results rationalized the magnetic properties of each of the dinuclear complexes.
Collapse
|