1
|
Zherdeva VV, Zaitsev PE, Skriabin AS, Shakurov AV, Vesnin VR, Skriabina ES, Tsygankov PA, Sviridova IK, Sergeeva NS, Kirsanova VA, Akhmedova SA, Serejnikova NB. Towards MRI Study of Biointegration of Carbon-Carbon Composites with Ca-P Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:492. [PMID: 40214538 PMCID: PMC11990118 DOI: 10.3390/nano15070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The development of specific MRI criteria to monitor the implantation process may provide valuable information of individual tissue response. Using MRI and histological methods, the biointegration of carbon-carbon (C-C) composites into the subcutaneous tissues of BDF1 mice and their biocompatibility were investigated. The study focused on autopsy specimens containing C-C composite implants, both uncoated and coated with synthetic hydroxyapatite (Ca-P) via electrodeposition or detonation techniques, assessed at 6 and 12 weeks post-implantation. The results revealed that the radiological characteristics of the connective tissue capsule surrounding the implants allowed for the differentiation between loose and dense connective tissues. Fat-suppressed T1-weighted MRI scans showed that the volume of both loose and dense connective tissue in the capsule increased proportionally at 6 and 12 weeks, with distinct ratios observed between the coated and uncoated specimens. The proposed MRI criteria provided a strategy for evaluating the density and homogeneity of the connective tissue capsule. This approach could be valuable for further non-invasive in vivo studies on implant biointegration.
Collapse
Affiliation(s)
- Victoria V. Zherdeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia;
| | - Petr E. Zaitsev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia;
| | - Andrei S. Skriabin
- Department of Power Engineering, Bauman Moscow State Technical University, Moscow 105005, Russia; (A.S.S.); (A.V.S.); (V.R.V.); (E.S.S.)
| | - Alexey V. Shakurov
- Department of Power Engineering, Bauman Moscow State Technical University, Moscow 105005, Russia; (A.S.S.); (A.V.S.); (V.R.V.); (E.S.S.)
| | - Vladimir R. Vesnin
- Department of Power Engineering, Bauman Moscow State Technical University, Moscow 105005, Russia; (A.S.S.); (A.V.S.); (V.R.V.); (E.S.S.)
| | - Elizaveta S. Skriabina
- Department of Power Engineering, Bauman Moscow State Technical University, Moscow 105005, Russia; (A.S.S.); (A.V.S.); (V.R.V.); (E.S.S.)
| | - Petr A. Tsygankov
- School of Physics, Industrial University of Santander, Bucaramanga 680002, Colombia;
| | - Irina K. Sviridova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI “National Medical Research Radiological Centre”, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.K.S.); (N.S.S.); (V.A.K.); (S.A.A.)
| | - Natalia S. Sergeeva
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI “National Medical Research Radiological Centre”, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.K.S.); (N.S.S.); (V.A.K.); (S.A.A.)
| | - Valentina A. Kirsanova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI “National Medical Research Radiological Centre”, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.K.S.); (N.S.S.); (V.A.K.); (S.A.A.)
| | - Suraya A. Akhmedova
- P.A. Herzen Moscow Research Oncology Institute, Branch of FSBI “National Medical Research Radiological Centre”, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.K.S.); (N.S.S.); (V.A.K.); (S.A.A.)
| | - Natalya B. Serejnikova
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
2
|
Zherdeva VV, Likhov AR, Saidvaliev UA, Fixler D, Demin D, Volodina VN, Apukhtina UA, Pawar S, Atuar B, Tuchin VV. Enhanced Fluorescence Imaging of Implants Based on Polyester Copolymers in Combination With MRI. JOURNAL OF BIOPHOTONICS 2025:e202400147. [PMID: 39899887 DOI: 10.1002/jbio.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Nowadays, many biodegradable materials are offered for biomedical applications, but there are only a few in vivo methods for their detection and monitoring. In this work, implants based on biodegradable polyester copolymers were labeled with indocyanine green (ICG) for fluorescence imaging in combination with tissue optical clearing (TOC) and magnetic resonance imaging (MRI). The results include in vitro degradation modeling followed by in vivo imaging of copolymer samples that were subcutaneously implanted in BALB/c mice. TOC with 70% glycerol has been demonstrated to significantly improve sample visualization. The TOC efficiency parameter Q demonstrated the variability of effects correlating with the timing of follow-up in the postimplantation period. It has been shown that nonhealing wounds, peri-implantation inflammation, or fibrosis, confirmed by MRI, affect the effectiveness of TOC in the range from Q = -30% to 70%.
Collapse
Affiliation(s)
- Victoria V Zherdeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ulugbek A Saidvaliev
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dmitry Demin
- MIREA - Russian Technological University, Moscow, Russia
| | - Veronika N Volodina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Uliana A Apukhtina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Bar Atuar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Valery V Tuchin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
3
|
Zadehnazari A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Amin Zadehnazari
- Department of Science, Petroleum University of Technology, Ahwaz, Iran
| |
Collapse
|
4
|
Mamun A, Sabantina L, Klöcker M, Heide A, Blachowicz T, Ehrmann A. Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques. Polymers (Basel) 2022; 14:polym14030533. [PMID: 35160526 PMCID: PMC8839327 DOI: 10.3390/polym14030533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Electrospinning can be used to produce nanofiber mats containing diverse nanoparticles for various purposes. Magnetic nanoparticles, such as magnetite (Fe3O4), can be introduced to produce magnetic nanofiber mats, e.g., for hyperthermia applications, but also for basic research of diluted magnetic systems. As the number of nanoparticles increases, however, the morphology and the mechanical properties of the nanofiber mats decrease, so that freestanding composite nanofiber mats with a high content of nanoparticles are hard to produce. Here we report on poly (acrylonitrile) (PAN) composite nanofiber mats, electrospun by a needle-based system, containing 50 wt% magnetite nanoparticles overall or in the shell of core–shell fibers, collected on a flat or a rotating collector. While the first nanofiber mats show an irregular morphology, the latter are quite regular and contain straight fibers without many beads or agglomerations. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal agglomerations around the pure composite nanofibers and even, round core–shell fibers, the latter showing slightly increased fiber diameters. Energy dispersive X-ray spectroscopy (EDS) shows a regular distribution of the embedded magnetic nanoparticles. Dynamic mechanical analysis (DMA) reveals that mechanical properties are reduced as compared to nanofiber mats with smaller amounts of magnetic nanoparticles, but mats with 50 wt% magnetite are still freestanding.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (L.S.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (L.S.)
| | - Michaela Klöcker
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.K.); (A.H.)
| | - Alexander Heide
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.K.); (A.H.)
| | - Tomasz Blachowicz
- Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.K.); (A.H.)
- Correspondence:
| |
Collapse
|
5
|
Banerjee A, Jariwala T, Baek YK, To DTH, Tai Y, Liu J, Park H, Myung NV, Nam J. Magneto- and opto-stimuli responsive nanofibers as a controlled drug delivery system. NANOTECHNOLOGY 2021; 32:505101. [PMID: 34525464 DOI: 10.1088/1361-6528/ac2700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The drawbacks of conventional drug administration include repeated administration, non-specific biodistribution in the body's systems, the long-term unsustainability of drug molecules, and high global cytotoxicity, posing a challenge for the efficient treatment of chronic diseases that require varying drug dosages over time for optimal therapeutic efficacy. Most controlled-release methods encapsulate drug molecules in biodegradable materials that dissolve over time to release the drug, making it difficult to deliver drugs on a schedule. To address these limitations, we developed a magneto-, opto-stimuli responsive drug delivery system based on functionalized electrospun nanofibers loaded with superparamagnetic iron oxide nanoparticles (SPIONs). We exploited the Néel relaxation effect of SPIONs, where heat generated from vibrating SPIONs under exogenously applied magnetic fields or laser illumination induced structural changes of the thermo-sensitive nanofibers that encapsulate the particles. We showed that this structural change of nanofibers is the governing factor in controlling the release of dye molecules, used as a model drug and co-encapsulated within the nanofibers. We also showed that the degree of nanofiber structural change depends on SPION loading and duration of stimulation, demonstrating the tunability of the drug release profile. Overall, we demonstrated the potential of SPION-embedded thermoplastic nanofibers as an attractive platform for on-demand drug delivery.
Collapse
Affiliation(s)
- Aihik Banerjee
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Tanvi Jariwala
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Youn-Kyung Baek
- Department of Magnetic Materials, Powder Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan gu, Changwon, Gyeongnam, Republic of Korea
| | - Dung Thi Hanh To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Youyi Tai
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Junze Liu
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Hyle Park
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Nosang V Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jin Nam
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| |
Collapse
|