1
|
Taiwo R, Zayed T, Bakhtawar B, Adey BT. Explainable deep learning models for predicting water pipe failures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124738. [PMID: 40054363 DOI: 10.1016/j.jenvman.2025.124738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Failures within water distribution networks (WDNs) lead to significant environmental and economic impacts. While existing research has established various predictive models for pipe failures, there remains a lack of studies focusing on the probability of leaks and bursts. Addressing this gap, the present study introduces a new approach that harnesses deep learning algorithms - Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and TabNet for failure prediction. The study enhances these base models by optimising their hyperparameters using Bayesian Optimisation (BO) and further refining the models through data scaling. The Copeland algorithm and SHapley Additive exPlanations (SHAP) are also applied for model ranking and interpretation, respectively. Applying this methodology to Hong Kong's WDN data, the study evaluates the models' predictive performance across several metrics, including accuracy, precision, recall, F1 score, Matthews Correlation Coefficient (MCC), and Cohen's Kappa. Results demonstrate that BO significantly enhances the models' predictive abilities, such that the TabNet model's F1 score for leak prediction increases by 36.2% on standardised data. The Copeland algorithm identifies CNN as the most effective model for predicting both leak and burst probabilities. As indicated by SHAP values, critical features influencing model predictions include pipe diameter, material, and age. The optimised CNN model has been deployed as user-friendly web applications for predicting the probability of leaks and bursts, enabling both single-pipe and batch predictions. This research provides crucial insights for WDN management, equipping water utilities with sophisticated tools to forecast the probability of pipe failure, enabling more effective mitigation of such failures.
Collapse
Affiliation(s)
- Ridwan Taiwo
- Department of Building and Real Estate, the Hong Kong Polytechnic University, Hung Hom, Hong Kong; Institute of Construction and Infrastructure Management, ETH Zurich, Stefano-Franscini-Platz 5, Zurich, Switzerland.
| | - Tarek Zayed
- Department of Building and Real Estate, the Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Beenish Bakhtawar
- Department of Building and Real Estate, the Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Bryan T Adey
- Institute of Construction and Infrastructure Management, ETH Zurich, Stefano-Franscini-Platz 5, Zurich, Switzerland
| |
Collapse
|
2
|
Todd E, Orr R, Gamage E, West E, Jabeen T, McGuinness AJ, George V, Phuong-Nguyen K, Voglsanger LM, Jennings L, Angwenyi L, Taylor S, Khosravi A, Jacka F, Dawson SL. Lifestyle factors and other predictors of common mental disorders in diagnostic machine learning studies: A systematic review. Comput Biol Med 2025; 185:109521. [PMID: 39667056 DOI: 10.1016/j.compbiomed.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Machine Learning (ML) models have been used to predict common mental disorders (CMDs) and may provide insights into the key modifiable factors that can identify and predict CMD risk and be targeted through interventions. This systematic review aimed to synthesise evidence from ML studies predicting CMDs, evaluate their performance, and establish the potential benefit of incorporating lifestyle data in ML models alongside biological and/or demographic-environmental factors. METHODS This systematic review adheres to the PRISMA statement (Prospero CRD42023401194). Databases searched included MEDLINE, EMBASE, PsycInfo, IEEE Xplore, Engineering Village, Web of Science, and Scopus from database inception to 28/08/24. Included studies used ML methods with feature importance to predict CMDs in adults. Risk of bias (ROB) was assessed using PROBAST. Model performance metrics were compared. The ten most important variables reported by each study were assigned to broader categories to evaluate their frequency across studies. RESULTS 117 studies were included (111 model development-only, 16 development and validation). Deep learning methods showed best accuracy for predicting CMD cases. Studies commonly incorporated features from multiple categories (n = 56), and frequently identified demographic-environmental predictors in their top ten most important variables (63/69 models). These tended to be in combination with psycho-social and biological variables (n = 15). Lifestyle data were infrequently examined as sole predictors of CMDs across included studies (4.27 %). Studies commonly had high heterogeneity and ROB ratings. CONCLUSION This review is the first to evaluate the utility of diagnostic ML for CMDs, assess their ROB, and evaluate predictor types. CMDs were able to be predicted, however studies had high ROB and lifestyle data were underutilised, precluding full identification of a robust predictor set.
Collapse
Affiliation(s)
- Emma Todd
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Rebecca Orr
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Elizabeth Gamage
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Emma West
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Tabinda Jabeen
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Amelia J McGuinness
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Victoria George
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia; University of Copenhagen, Novo Nordisk Foundation, Centre for Basic Metabolic Research, Blegdamsvej 3A, 2200, København, Denmark
| | - Kate Phuong-Nguyen
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Lara M Voglsanger
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Laura Jennings
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Lisa Angwenyi
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Sabine Taylor
- Macquarie University, Balaclava Rd, Macquarie Park, Sydney, NSW, Australia
| | - Abbas Khosravi
- Deakin University, Institute for Intelligent Systems Research and Innovation, 75 Pigdons Rd, Waurn Ponds, Australia
| | - Felice Jacka
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia
| | - Samantha L Dawson
- Deakin University, Food & Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Health Education and Research Building, Ryrie Street, Geelong, Victoria, Australia; Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), 75 Pigdons Rd, Waurn Ponds, Victoria, Australia.
| |
Collapse
|