1
|
Lawson BAJ, Drovandi C, Burrage P, Bueno-Orovio A, Dos Santos RW, Rodriguez B, Mengersen K, Burrage K. Perlin noise generation of physiologically realistic cardiac fibrosis. Med Image Anal 2024; 98:103240. [PMID: 39208559 DOI: 10.1016/j.media.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis, a pathological increase in extracellular matrix proteins, is a significant health issue that hinders the function of many organs in the body, in some cases fatally. In the heart, fibrosis impacts on electrical propagation in a complex and poorly predictable fashion, potentially serving as a substrate for dangerous arrhythmias. Individual risk depends on the spatial manifestation of fibrotic tissue, and learning the spatial arrangement on the fine scale in order to predict these impacts still relies upon invasive ex vivo procedures. As a result, the effects of spatial variability on the symptomatic impact of cardiac fibrosis remain poorly understood. In this work, we address the issue of availability of such imaging data via a computational methodology for generating new realisations of cardiac fibrosis microstructure. Using the Perlin noise technique from computer graphics, together with an automated calibration process that requires only a single training image, we demonstrate successful capture of collagen texturing in four types of fibrosis microstructure observed in histological sections. We then use this generator to quantitatively analyse the conductive properties of these different types of cardiac fibrosis, as well as produce three-dimensional realisations of histologically-observed patterning. Owing to the generator's flexibility and automated calibration process, we also anticipate that it might be useful in producing additional realisations of other physiological structures.
Collapse
Affiliation(s)
- Brodie A J Lawson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia; QUT Centre for Data Science, Brisbane 4000, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Brisbane 4000, Australia.
| | - Christopher Drovandi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia; QUT Centre for Data Science, Brisbane 4000, Australia
| | - Pamela Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia; QUT Centre for Data Science, Brisbane 4000, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Brisbane 4000, Australia
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Oxford OX1 3AZ, United Kingdom
| | - Rodrigo Weber Dos Santos
- Graduate Program in Computational Modeling, Universidade Federal de Juiz de Fora, Juiz de Fora 29930, Brazil
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3AZ, United Kingdom
| | - Kerrie Mengersen
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia; QUT Centre for Data Science, Brisbane 4000, Australia
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Brisbane 4000, Australia; Visiting Professor of Department of Computer Science, University of Oxford, Oxford OX1 3AZ, United Kingdom
| |
Collapse
|
2
|
Okenov A, Nezlobinsky T, Zeppenfeld K, Vandersickel N, Panfilov AV. Computer based method for identification of fibrotic scars from electrograms and local activation times on the epi- and endocardial surfaces of the ventricles. PLoS One 2024; 19:e0300978. [PMID: 38625849 PMCID: PMC11020530 DOI: 10.1371/journal.pone.0300978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Cardiac fibrosis stands as one of the most critical conditions leading to lethal cardiac arrhythmias. Identifying the precise location of cardiac fibrosis is crucial for planning clinical interventions in patients with various forms of ventricular and atrial arrhythmias. As fibrosis impedes and alters the path of electrical waves, detecting fibrosis in the heart can be achieved through analyzing electrical signals recorded from its surface. In current clinical practices, it has become feasible to record electrical activity from both the endocardial and epicardial surfaces of the heart. This paper presents a computational method for reconstructing 3D fibrosis using unipolar electrograms obtained from both surfaces of the ventricles. The proposed method calculates the percentage of fibrosis in various ventricular segments by analyzing the local activation times and peak-to-peak amplitudes of the electrograms. Initially, the method was tested using simulated data representing idealized fibrosis in a heart segment; subsequently, it was validated in the left ventricle with fibrosis obtained from a patient with nonischemic cardiomyopathy. The method successfully determined the location and extent of fibrosis in 204 segments of the left ventricle model with an average error of 0.0±4.3% (N = 204). Moreover, the method effectively detected fibrotic scars in the mid-myocardial region, a region known to present challenges in accurate detection using electrogram amplitude as the primary criterion.
Collapse
Affiliation(s)
- Arstanbek Okenov
- Department of Physics and Astronomy, Ghent University, Gent, Belgium
| | - Timur Nezlobinsky
- Department of Physics and Astronomy, Ghent University, Gent, Belgium
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Gent, Belgium
| | | |
Collapse
|
3
|
Dokuchaev A, Chumarnaya T, Bazhutina A, Khamzin S, Lebedeva V, Lyubimtseva T, Zubarev S, Lebedev D, Solovyova O. Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy. Front Physiol 2023; 14:1162520. [PMID: 37497440 PMCID: PMC10367108 DOI: 10.3389/fphys.2023.1162520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: The 30-50% non-response rate to cardiac resynchronization therapy (CRT) calls for improved patient selection and optimized pacing lead placement. The study aimed to develop a novel technique using patient-specific cardiac models and machine learning (ML) to predict an optimal left ventricular (LV) pacing site (ML-PS) that maximizes the likelihood of LV ejection fraction (LVEF) improvement in a given CRT candidate. To validate the approach, we evaluated whether the distance DPS between the clinical LV pacing site (ref-PS) and ML-PS is associated with improved response rate and magnitude. Materials and methods: We reviewed retrospective data for 57 CRT recipients. A positive response was defined as a more than 10% LVEF improvement. Personalized models of ventricular activation and ECG were created from MRI and CT images. The characteristics of ventricular activation during intrinsic rhythm and biventricular (BiV) pacing with ref-PS were derived from the models and used in combination with clinical data to train supervised ML classifiers. The best logistic regression model classified CRT responders with a high accuracy of 0.77 (ROC AUC = 0.84). The LR classifier, model simulations and Bayesian optimization with Gaussian process regression were combined to identify an optimal ML-PS that maximizes the ML-score of CRT response over the LV surface in each patient. Results: The optimal ML-PS improved the ML-score by 17 ± 14% over the ref-PS. Twenty percent of the non-responders were reclassified as positive at ML-PS. Selection of positive patients with a max ML-score >0.5 demonstrated an improved clinical response rate. The distance DPS was shorter in the responders. The max ML-score and DPS were found to be strong predictors of CRT response (ROC AUC = 0.85). In the group with max ML-score > 0.5 and DPS< 30 mm, the response rate was 83% compared to 14% in the rest of the cohort. LVEF improvement in this group was higher than in the other patients (16 ± 8% vs. 7 ± 8%). Conclusion: A new technique combining clinical data, personalized heart modelling and supervised ML demonstrates the potential for use in clinical practice to assist in optimizing patient selection and predicting optimal LV pacing lead position in HF candidates for CRT.
Collapse
Affiliation(s)
- Arsenii Dokuchaev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Tatiana Chumarnaya
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Anastasia Bazhutina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Svyatoslav Khamzin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | | | - Tamara Lyubimtseva
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Stepan Zubarev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitry Lebedev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Solovyova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
4
|
Long Y, Niu Y, Liang K, Du Y. Mechanical communication in fibrosis progression. Trends Cell Biol 2021; 32:70-90. [PMID: 34810063 DOI: 10.1016/j.tcb.2021.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Mechanical hallmarks of fibrotic microenvironments are both outcomes and causes of fibrosis progression. Understanding how cells sense and transmit mechanical cues in the interplay with extracellular matrix (ECM) and hemodynamic forces is a significant challenge. Recent advances highlight the evolvement of intracellular mechanotransduction pathways responding to ECM remodeling and abnormal hemodynamics (i.e., low and disturbed shear stress, pathological stretch, and increased pressure), which are prevalent biomechanical characteristics of fibrosis in multiple organs (e.g., liver, lung, and heart). Here, we envisage the mechanical communication in cell-ECM, cell-hemodynamics and cell-ECM-cell crosstalk (namely paratensile signaling) during fibrosis expansion. We also provide a comprehensive overview of in vitro and in silico engineering systems for disease modeling that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate fibrosis progression.
Collapse
Affiliation(s)
- Yi Long
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Nezlobinsky T, Okenov A, Panfilov AV. Multiparametric analysis of geometric features of fibrotic textures leading to cardiac arrhythmias. Sci Rep 2021; 11:21111. [PMID: 34702936 PMCID: PMC8548304 DOI: 10.1038/s41598-021-00606-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/28/2021] [Indexed: 01/25/2023] Open
Abstract
One of the important questions in cardiac electrophysiology is to characterise the arrhythmogenic substrate; for example, from the texture of the cardiac fibrosis, which is considered one of the major arrhythmogenic conditions. In this paper, we perform an extensive in silico study of the relationships between various local geometric characteristics of fibrosis on the onset of cardiac arrhythmias. In order to define which texture characteristics have better predictive value, we induce arrhythmias by external stimulation, selecting 4363 textures in which arrhythmia can be induced and also selecting 4363 non-arrhythmogenic textures. For each texture, we determine such characteristics as cluster area, solidity, mean distance, local density and zig-zag propagation path, and compare them in arrhythmogenic and non-arrhythmogenic cases. Our study shows that geometrical characteristics, such as cluster area or solidity, turn out to be the most important for prediction of the arrhythmogenic textures. Overall, we were able to achieve an accuracy of 67% for the arrhythmogenic texture-classification problem. However, the accuracy of predictions depends on the size of the region chosen for the analysis. The optimal size for the local areas of the tissue was of the order of 0.28 of the wavelength of the arrhythmia. We discuss further developments and possible applications of this method for characterising the substrate of arrhythmias in fibrotic textures.
Collapse
Affiliation(s)
- T Nezlobinsky
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium.,Ural Federal University, Ekaterinburg, Russia
| | - A Okenov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium
| | - A V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000, Gent, Belgium. .,Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
6
|
Pashakhanloo F, Panfilov AV. Minimal Functional Clusters Predict the Probability of Reentry in Cardiac Fibrotic Tissue. PHYSICAL REVIEW LETTERS 2021; 127:098101. [PMID: 34506203 DOI: 10.1103/physrevlett.127.098101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis is a well-known arrhythmogenic condition which can lead to sudden cardiac death. Physically, fibrosis can be viewed as a large number of small obstacles in an excitable medium, which may create nonlinear wave turbulence or reentry. The relation between the specific texture of fibrosis and the onset of reentry is of great theoretical and practical importance. Here, we present a conceptual framework which combines functional aspects of propagation manifested as conduction blocks, with reentry wavelength and geometrical clusters of fibrosis. We formulate them into the single concept of minimal functional cluster and through extensive simulations show that it characterizes the path of reexcitation accurately, and importantly its size distribution quantitatively predicts the reentry probability for different fibrosis densities and tissue excitabilities.
Collapse
Affiliation(s)
- Farhad Pashakhanloo
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium
- Ural Federal University, 620002 Ekaterinburg, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, 119146 Moscow, Russia
| |
Collapse
|
7
|
Sánchez J, Luongo G, Nothstein M, Unger LA, Saiz J, Trenor B, Luik A, Dössel O, Loewe A. Using Machine Learning to Characterize Atrial Fibrotic Substrate From Intracardiac Signals With a Hybrid in silico and in vivo Dataset. Front Physiol 2021; 12:699291. [PMID: 34290623 PMCID: PMC8287829 DOI: 10.3389/fphys.2021.699291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 11/15/2022] Open
Abstract
In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.
Collapse
Affiliation(s)
- Jorge Sánchez
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, Valencia, Spain
| | - Giorgio Luongo
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Mark Nothstein
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Laura A. Unger
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, Valencia, Spain
| | - Armin Luik
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute for Technology, Karlsruhe, Germany
| |
Collapse
|