• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698279)   Today's Articles (80)
For: Martinez-gil F, Lozano M, García-fernández I, Romero P, Serra D, Sebastián R. Using Inverse Reinforcement Learning with Real Trajectories to Get More Trustworthy Pedestrian Simulations. Mathematics 2020;8:1479. [DOI: 10.3390/math8091479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Number Cited by Other Article(s)
1
Andriella A, Torras C, Abdelnour C, Alenyà G. Introducing CARESSER: A framework for in situ learning robot social assistance from expert knowledge and demonstrations. USER MODELING AND USER-ADAPTED INTERACTION 2022;33:441-496. [PMID: 35311217 PMCID: PMC8916953 DOI: 10.1007/s11257-021-09316-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
2
Nasernejad P, Sayed T, Alsaleh R. Modeling pedestrian behavior in pedestrian-vehicle near misses: A continuous Gaussian Process Inverse Reinforcement Learning (GP-IRL) approach. ACCIDENT; ANALYSIS AND PREVENTION 2021;161:106355. [PMID: 34461394 DOI: 10.1016/j.aap.2021.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA