1
|
Optimization and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides Derived from Camellia Seed Cake through Enzymatic Hydrolysis. Foods 2023; 12:foods12020393. [PMID: 36673484 PMCID: PMC9857891 DOI: 10.3390/foods12020393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition. The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration, 50 °C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF) were identified and synthesized for the first time by Liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of 0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and treatment of diabetes.
Collapse
|
2
|
Chen H, Chen Y, Zheng H, Xiang X, Xu L. A novel angiotensin-I-converting enzyme inhibitory peptide from oyster: Simulated gastro-intestinal digestion, molecular docking, inhibition kinetics and antihypertensive effects in rats. Front Nutr 2022; 9:981163. [PMID: 36082025 PMCID: PMC9445672 DOI: 10.3389/fnut.2022.981163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel peptide, AEYLCEAC with high angiotensin-I-converting enzyme inhibitory (ACEI) activity was screened from oyster (Crassostrea gigas) hydrolysates, which was obtained from simulated gastro-intestinal digestion. Candidate peptides were confirmed to have a higher binding to angiotensin-I-converting enzyme (ACE) than the positive drug phosphoinic tripeptide calculated by Discovery Studio, and AEYLCEAC showed the highest ACE inhibition rate in vitro with a IC50 of 4.287 mM. Lineweaver-Burk plots confirmed that the peptidic inhibitory type of ACE is competitive. The molecular docking showed that ACEI activity of the AEYLCEAC was mainly due to the hydrogen bonding interactions with the active pockets (S1 and S2) of ACE. In vivo, AEYLCEAC effectively reduced diastolic blood pressure (DBP) and Systolic blood pressure (SBP) in hypertensive rats. These results indicate that AEYLCEAC might act as a helpful ingredient in functional foods or pharmaceuticals for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yu Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, China
| | - Huizhen Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Xingwei Xiang,
| | - Lu Xu
- Department of Animal Medicine, College of Agriculture and Forestry Science, Linyi University, Linyi, China
- Lu Xu,
| |
Collapse
|
3
|
Bioinformatics identification and molecular mechanism of angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory peptides from in silico digest of Crassostrea gigas. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Zheng SL, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle. Mar Drugs 2022; 20:md20030176. [PMID: 35323475 PMCID: PMC8954214 DOI: 10.3390/md20030176] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 μM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Shuo-Lei Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
| | - Qian-Bin Luo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China;
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| |
Collapse
|
5
|
Suo SK, Zhao YQ, Wang YM, Pan XY, Chi C, Wang B. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from protein hydrolysate of Mytilus edulis: Isolation, identification, molecular docking study, and protective function on HUVECs. Food Funct 2022; 13:7831-7846. [DOI: 10.1039/d2fo00275b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the study, seventeen angiotensin converting enzyme (ACE) inhibitory peptides were isolated from protein hydrolysate of blue mussel (Mytilus edulis) and identified as MFR, MFV, FV, KP, QP, QVK, IK,...
Collapse
|
6
|
Jaziri AA, Shapawi R, Mohd Mokhtar RA, Md. Noordin WN, Huda N. Tropical Marine Fish Surimi By-products: Utilisation and Potential as Functional Food Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | | | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
7
|
Purification, characterization and molecular docking study of angiotensin-I converting enzyme (ACE) inhibitory peptide from shortfin scad ( Decapterus macrosoma) protein hydrolysate. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4567-4577. [PMID: 34629521 DOI: 10.1007/s13197-020-04944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Hypertension is a threatening chronic disease, which become a global killer among the adult population. The mortality rate increasing day by day even several Angiotensin I-converting enzyme (ACE) inhibitor drugs were introduced. Bioactive peptides derived from aquatic resources exhibits potential ACE inhibitory activity. The objective of this work is to report the purification and molecular docking studies of angiotensin-I converting enzyme (ACE) inhibitory peptide isolated from shortfin scad (Decapterus macrosoma) waste protein hydrolysate (SWH), enzymatically prepared by using alcalase. The purification process included ultrafiltration, gel filtration and reverse phase high performance liquid chromatography (RP-HPLC). Results showed that ultra-filtered peptide fraction (< 3 kDa) possessed the highest ACE inhibitory activity, followed by the fraction 14 by gel filtration. Fraction P obtained by RP-HPLC, with the amino acid sequence of RGVGPVPAA (IC50 = 0.20 mg/ml) was identified. In terms of ACE inhibition, the Lineweaver-Burk plot showed that the SWH peptide obtained acted as a competitive ACE inhibitor. The molecular docking studies showed that the SWH peptide exhibit hydrogen bonds and Pi-interactions with ACE by Z-dock scores. These results showed that the purified peptide isolated from shortfin scad waste hydrolysate has potential antihypertensive properties which could potentially be used as functional food ingredients.
Collapse
|
8
|
Lu Y, Wu Y, Hou X, Lu Y, Meng H, Pei S, Dai Z, Wu S. Separation and identification of ACE inhibitory peptides from lizard fish proteins hydrolysates by metal affinity-immobilized magnetic liposome. Protein Expr Purif 2021; 191:106027. [PMID: 34838725 DOI: 10.1016/j.pep.2021.106027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Purification of peptides responsible for angiotensin I-converting enzyme (ACE) inhibitory activity from highly complex protein hydrolysates is difficult. Affinity chromatography is a powerful method for purification of peptides. In this study, a metal affinity-immobilized magnetic liposome (MA-IML) was prepared using lipid, N-hexadecyl iminodiacetic acid (HIDA) and magnetic nanoparticles made of FeCl3·6H2O and FeCl2·4H2O as main materials. MA-IML was used to adsorb ACE inhibitory peptides from lizard fish proteins hydrolysates. The optimal pH of adsorption solution was 8.5. The peptide sample adsorbed by MA-IML was separated by reverse phase-high performance liquid chromatography (RP-HPLC). Upon amino acid sequence analysis and verification, an ACE inhibitory peptide with IC50 value of 108 μM was identified to be VYP. Molecular docking results indicated that VYP bound to ACE via multiple binding sites. The present study demonstrated that MA-IML might be a useful tool for separating ACE inhibitory peptides from proteins hydrolysates.
Collapse
Affiliation(s)
- Yuan Lu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yujing Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Xuhe Hou
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yuting Lu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hualin Meng
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Shicheng Pei
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zhihang Dai
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
9
|
Ding Q, Sheikh AR, Chen Q, Hu Y, Sun N, Su X, Luo L, Ma H, He R. Understanding the Mechanism for the Structure-Activity Relationship of Food-Derived ACEI Peptides. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qingzhi Ding
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Arooj Rehman Sheikh
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Qian Chen
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Yize Hu
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Nianzhen Sun
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Xiaodong Su
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Lin Luo
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom ( Lentinula edodes). Journal of Food Science and Technology 2021; 58:85-97. [PMID: 33505054 DOI: 10.1007/s13197-020-04517-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/21/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Abstract Angiotensin-I converting enzyme (ACE) inhibitors are widely used to control hypertension. In this study, protein hydrolysates from shiitake mushroom were hydrolyzed to prepare ACE-inhibitory peptides. Optimum process conditions for the hydrolysis of shiitake mushrooms using Alcalase were optimized using response surface methodology. Monitoring was conducted to check the degree of hydrolysis (DH) and ACE inhibitory activity. In the results, the optimum condition with the highest DH value of 28.88% was 50.2 °C, 3-h hydrolysis time, and 1.16 enzyme/substrate ratios. The highest ACE inhibitory activity (IC50 of 0.33 μg/mL) was under 47 °C, 3 h 28 min hydrolysis time, and 0.59 enzyme/substrate ratios. The highest activity was fractionated into 5 ranges of molecular weight, and the fraction below 0.65 kDa showed the highest activity with IC50 of 0.23 μg/mL. This fraction underwent purification using RP-HPLC, meanwhile the peak which offered a retention time of about 37 min showed high ACE inhibitory activity. Mass spectrometry identified the amino acid sequence of this peak as Lys-Ile-Gly-Ser-Arg-Ser-Arg-Phe-Asp-Val-Thr (KIGSRSRFDVT), with a molecular weight of 1265.43 Da. The synthesized variant of this peptide produced an ACE inhibitory activity (IC50) of 37.14 μM. The peptide KIGSRSRFDVT was shown to serve as a non-competitive inhibitor according to the Lineweaver-Burk plot findings. A molecular docking study was performed, which showed that the peptide binding occurred at an ACE non-active site. The findings suggest that peptides derived from shiitake mushrooms could serve either as useful components in pharmaceutical products, or in functional foods for the purpose of treating hypertension. Graphic abstract
Collapse
|
11
|
Production of Protein Hydrolysate Containing Antioxidant and Angiotensin -I-Converting Enzyme (ACE) Inhibitory Activities from Tuna (Katsuwonus pelamis) Blood. Processes (Basel) 2020. [DOI: 10.3390/pr8111518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tuna blood (TB) was subjected to enzymatic hydrolysis. The effects of the relationship of hydrolysis time (30–180 min) and enzyme concentration (0.5–3.0% w/w protein) on the degree of hydrolysis (DH), yield, antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory activities were determined. The response surface methodology (RSM) showed that TB hydrolysis’s optimum conditions were hydrolysis for 180 min and Alcalase, Neutrase or Flavourzyme at 2.81%, 2.89% or 2.87% w/w protein, respectively. The hydrolysates with good DH (40–46%), yield (3.5–4.6%), the IC50 of DPPH (0.8–1.6 mg/mL) and ABTS (1.0–1.4 mg/mL) radical scavenging activity, ferric reducing antioxidant power (FRAP) value (0.28–0.65 mmol FeSO4/g) and IC50 of ACE inhibitory activity (0.15–0.28 mg/mL) were obtained with those conditions. The TB hydrolysate using Neutrase (TBHN) was selected for characterization in terms of amino acid composition, peptide fractions and sensory properties. The essential, hydrophobic and hydrophilic amino acids in TBHN were ~40%, 60% and 20% of total amino acids, respectively. The fraction of molecular weight <1 kDa showed the highest antioxidant and ACE inhibitory activities. Fishiness and bitterness were the main sensory properties of TBHN. Fortification of TBHN in mango jelly at ≤ 0.5% (w/w) was accepted by consumers as like moderately to like slightly, while mango jelly showed strong antioxidant and ACE inhibitory activities. TBHN could be developed for natural antioxidants and antihypertensive peptides in food and functional products.
Collapse
|
12
|
Hassan LK, Shazly AB, Kholif AEKM, Sayed AF, El-Aziz MA. Effect of flaxseed (Linum usitatissimum) and soybean (Glycine max) oils in Egyptian lactating buffalo and cow diets on the milk and soft cheese quality. ACTA SCIENTIARUM: ANIMAL SCIENCES 2020; 42:e47200. [DOI: 10.4025/actascianimsci.v42i1.47200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Produce and compare soft cheese with potential benefits of human health from Egyptian buffalo's and cow's milk was studied. Eight Egyptian lactating buffalos and cows were fed a total mixed ration supplemented with either 0% oil (CD), 2% flaxseed oil (DFO), 2% soybean oil (DSO), or 2% of their mixture (1:1, DFSO) according to a double 4 x 4 Latin Square design. Milk yield was similar between buffalo's diets but was higher in cows fed a DFO, DSO or DFSO resulting in 11.15, 8.21% or 8.97% increases compared with the control diet, respectively. Milk composition was not significantly affected in both buffalos and cows fed diets. The DFO, DSO or DFSO displayed decreased short-chain fatty acids, especially DSO and DFSO (3.73 and 3.33%, respectively) when compared to CD for buffalo milk (6.32%). The DSO and DFSO were more effective for increasing unsaturated fatty acids followed by the DFSO in buffalo's milk fat (42.31 and 41.90 %), whereas DFO and DFSO were more effective in cow's milk fat (39.67 and 39.84%), respectively. DFO, DSO or DFSO had no significant effect on the yield, composition and sensory properties of resultant soft cheese compared to the CD for both lactating cows and buffalos. During storage, a diet rich in unsaturated fatty acids enhances protein proteolysis and antioxidant activity of soft cheese during storage compared to the CD especially for soft cheese produced from buffalo's milk.
Collapse
|
13
|
Shu Y, Cao XY, Chen J. Preparation and antagonistic effect of ACE inhibitory peptide from cashew. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6822-6832. [PMID: 31385307 DOI: 10.1002/jsfa.9967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/18/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) inhibitory peptides were found to alleviate acute hepatitis significantly. In this study, we purified and identified ACE inhibitory peptide from cashew to evaluate its protective role on alcohol-induced acute hepatitis in mice. RESULTS The ACE inhibitory peptides were purified by using consecutive chromatographic techniques. One of these peptides (FETISFK) exhibited the highest ACE inhibition rate (91.04 ± 0.31%). In vivo, the results showed that ACE inhibitory peptide decreased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) caused by alcohol exposure. Moreover, it could increase the activities of superoxide dismutase (SOD) and glutathione (GSH), and decrease the level of malondialdehyde (MDA). It was also found to down-regulate markedly the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). It could also decrease the expression of ACE, angiotensin II (AngII) and angiotensin II type 1 receptor (AT1 R). CONCLUSION These findings support the view that the ACE inhibitory peptide alleviated acute hepatitis by down-regulating the ACE-AngII-AT1 R axis, broadening the research approach to prevent acute hepatitis, and providing experimental data for the development and utilization of cashews. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Shu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xian-Ying Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Jian Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
14
|
Zhao QC, Zhao JY, Ahn DU, Jin YG, Huang X. Separation and Identification of Highly Efficient Antioxidant Peptides from Eggshell Membrane. Antioxidants (Basel) 2019; 8:antiox8100495. [PMID: 31635262 PMCID: PMC6826681 DOI: 10.3390/antiox8100495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
The enzymatic hydrolysates (EHs) of the eggshell membrane (ESM) were obtained after incubating eggshell membrane in solutions prepared with Na2SO3 and alkaline protease combinations. The effects of enzyme species, enzyme dosage, Na2SO3 concentration, and hydrolysis time on the antioxidant activity of the ESM-EH were determined. Also, the correlation between the degree of hydrolysis (DH) and the antioxidant activity of ESM-EH was analyzed. The DH of ESM-EH showed a highly positive correlation with the reducing power (R2 = 0.857) and total antioxidant activity (TAA) (R2 = 0.876) and performed negative correlation with the Fe2+-chelating ability (R2 = −0.529). The molecular weight distribution of the ESM-EH was determined by MALDI-TOF/MS. Cation exchange chromatography (Sephadex C-25) was used to isolate the ESM-EH and then the enzymatic hydrolysis fragment (EHF) was obtained. Among the five isolated fragments (F1~F5), fragment 3 (F3), which was composed of 28 polypeptides, showed the highest ability to quench ABTS• (2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid) (90.44%) and also displayed stronger TBARS (thiobarbituric acid– reactive substances) (58.17%) and TAA (303.82 µg /mL) than the ESM-EH. Further analysis of the 28 peptides in F3 identified using LC-MS/MS indicated that five peptides (ESYHLPR, NVIDPPIYAR, MFAEWQPR, LLFAMTKPK, MLKMLPFK) showed high water-solubility, biological activities, and antioxidant characteristics. Finally, the TAA of the synthetic peptide was verified, the synthetic peptides ESYHLPR and MFAEWQPR performed the best activity and have high potentials to be used as antioxidant agents in functional foods, pharmaceuticals, or cosmetics.
Collapse
Affiliation(s)
- Qian-Cheng Zhao
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| | - Jie-Yuan Zhao
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Yong-Guo Jin
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| | - Xi Huang
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| |
Collapse
|
15
|
Saisavoey T, Sangtanoo P, Reamtong O, Karnchanatat A. Free radical scavenging and anti-inflammatory potential of a protein hydrolysate derived from salmon bones on RAW 264.7 macrophage cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5112-5121. [PMID: 30982967 DOI: 10.1002/jsfa.9755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salmon bones, a waste by-product from the salmon industry, were used as a protein hydrolysate source for the production of bioactive peptides. The aim of this work was to evaluate the potential antioxidant and anti-inflammatory properties of salmon bone protein hydrolysate (SBPH). RESULTS Salmon bones were hydrolyzed by separately using one of four proteases (Alcalase, Favourzyme, Neutrase and papain) at various concentrations (10, 25 and 50 mg mL-1 ), where the SBPH derived from 10 mg mL-1 papain hydrolysis exhibited the highest nitric oxide (NO) radical scavenging activity. After ultrafiltration, the MW < 0.65 kDa fraction showed the strongest NO inhibitory activity and was further fractionated by gel filtration chromatography (G1 and G2 fractions) and reverse-phase high-performance liquid chromatographic fractionation of the G1 fraction, from which the three main peaks (H1, H2 and H3) were found to have a marked NO-inhibitory activity and their peptide sequences were determined. Moreover, the G1 fraction was shown to inhibit both the lipopolysaccharide (LPS)-induced NO production and the LPS-induced inducible NO synthase , interleukin-6, tumor necrosis factor-α and induced NO production and the LPSCOX-2 mRNA levels in RAW 264.7 cells. CONCLUSIONS Salmon bones from the salmon fisheries and farming industry were utilized by enzymatic hydrolysis for the production of valuable peptides. The results of this study suggested that bioactive peptides derived from salmon bones would be alternative anti-inflammation materials in functional resources. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
| |
Collapse
|
16
|
Guo B, Zhou A, Liu G, Ying D, Xiao J, Miao J. Changes of physicochemical properties of greater lizardfish (Saurida tumbil) surimi gels treated with high pressure combined with microbial transglutaminase. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Baoyan Guo
- Department of Food Science, College of Food Science South China Agricultural University Guangzhou China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou China
| | - Aimei Zhou
- Department of Food Science, College of Food Science South China Agricultural University Guangzhou China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou China
| | - Guo Liu
- Department of Food Science, College of Food Science South China Agricultural University Guangzhou China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou China
| | - Danyang Ying
- CSIRO Agricultural and Food Werribee Victoria Australia
| | - Jie Xiao
- Department of Food Science, College of Food Science South China Agricultural University Guangzhou China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou China
| | - Jianyin Miao
- Department of Food Science, College of Food Science South China Agricultural University Guangzhou China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods Guangzhou China
| |
Collapse
|
17
|
Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zeng Q, Dai M, Yang Y, Su D, Feng S, He S, Tian B. Significant fat reduction in deep-fried kamaboko by fish protein hydrolysates derived from common carp (Cyprinus carpio). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3255-3263. [PMID: 30549052 DOI: 10.1002/jsfa.9538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND To evaluate their fat reduction effect, common carp fish protein hydrolysates (FPH) were made using four methods: the conventional enzymatic process, a microwave-intensified enzymatic process, the conventional alkaline hydrolysis process, and a microwave-intensified alkaline hydrolysis process. RESULTS The efficiency of protein extraction was significantly enhanced by microwave intensification. The oil-holding capacities of FPH produced by these four processes were all lower than that of raw fish protein. The water-holding capacities of FPH produced by these four processes were all higher than that of raw fish protein. The FPH from the four processes and raw fish protein were used in the preparation of deep-fried kamaboko. The fat content of deep-fried kamaboko was drastically reduced from approximately 160 g kg-1 to about 50 g kg-1 by replacing 20 g kg-1 fish mince with FPH, regardless of the process. Texture profile analysis (TPA) of deep-fried kamaboko found no significant difference in hardness and brittleness among all the deep-fried kamaboko samples. The similar interior protein cross-linking micro-structure of all these samples further explained the TPA finding. CONCLUSION With the involvement of FPH in the formulation, the fat content of deep-fried kamaboko can be significantly reduced from approximately 160 to 50 g kg-1 , without a change in its texture. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Mingrui Dai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Yuan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Shilun Feng
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
- Peats Soil and Garden Supplies, Whites Valley, Australia
| | - Bin Tian
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
19
|
Shazly AB, Mu H, Liu Z, El-Aziz MA, Zeng M, Qin F, Zhang S, He Z, Chen J. Release of antioxidant peptides from buffalo and bovine caseins: Influence of proteases on antioxidant capacities. Food Chem 2019; 274:261-267. [DOI: 10.1016/j.foodchem.2018.08.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
|
20
|
Ling Y, Liping S, Yongliang Z. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking. Food Funct 2019; 9:5251-5259. [PMID: 30229250 DOI: 10.1039/c8fo00569a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Collapse
Affiliation(s)
- Yuan Ling
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | | | | |
Collapse
|
21
|
Chen J, Liu Y, Wang G, Sun S, Liu R, Hong B, Gao R, Bai K. Processing Optimization and Characterization of Angiotensin-Ι-Converting Enzyme Inhibitory Peptides from Lizardfish ( Synodus macrops) Scale Gelatin. Mar Drugs 2018; 16:md16070228. [PMID: 29973522 PMCID: PMC6071053 DOI: 10.3390/md16070228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Hypertension can cause coronary heart disease. Synthetic angiotensin-converting enzyme (ACE) inhibitors are effective antihypertensive drugs but often cause side effects. The aim of this study was to prepare potential ACE inhibitors from scales. Gelatin was extracted from lizardfish scales. Then, scale gelatin was enzymolyzed to prepare ACE inhibitory peptides using response surface methodology. Proteolytic conditions after optimization were as follows: pH 7.0, enzyme substrate ratio 3.2%, temperature 47 °C, and proteolysis lasting 2 h and 50 min. The experimental ACE inhibitory activity under optimal conditions was 86.0 ± 0.4%. Among the 118 peptides identified from gelatin hydrolysates, 87.3% were hydrophilic and 93.22% had a molecular weight <2000 Da. Gelatin peptides had high stability upon exposure to high temperature and pH as well as gastrointestinal tract enzymes. Gelatin peptides showed an antihypertensive effect in spontaneously hypertensive rats at a dosage of 2 g/kg in the long-term experiments. A new ACE inhibitory peptide was isolated from gelatin hydrolysates, and was identified as AGPPGSDGQPGAK with an IC50 value of 420 ± 20 μM. In this way, ACE inhibitory peptides derived from scale gelatin have the potential to be used as healthy ACE-inhibiting drug raw materials.
Collapse
Affiliation(s)
- Junde Chen
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| | - Ying Liu
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| | - Guangyu Wang
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| | - Shanshan Sun
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Bihong Hong
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| | - Ran Gao
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| | - Kaikai Bai
- Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China.
| |
Collapse
|
22
|
Noman A, Xu Y, AL-Bukhaiti WQ, Abed SM, Ali AH, Ramadhan AH, Xia W. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon ( Acipenser sinensis ) by using papain enzyme. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni 2. Mar Drugs 2017; 15:md15020029. [PMID: 28212269 PMCID: PMC5334609 DOI: 10.3390/md15020029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 01/24/2023] Open
Abstract
Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish (Saurida elongata) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC-Ni2+). Analysis of amino acid levels revealed that F2 eluted from IMAC was enriched in Met, His, Tyr, Pro, Ile, and Leu compared to the crude peptide LFPH-I. F2 with the high ACE inhibitory activity (IC50 of 0.116 mg·mL−1) was further separated by a reverse-phase column to yield a novel ACE inhibitory peptide with IC50 value of 52 μM. The ACE inhibitory peptide was identified as Arg-Tyr-Arg-Pro, RYRP. The present study demonstrated that IMAC may be a useful tool for the separation of ACE inhibitory peptides from protein hydrolysate.
Collapse
|
24
|
Manoharan S, Shuib AS, Abdullah N. STRUCTURAL CHARACTERISTICS AND ANTIHYPERTENSIVE EFFECTS OF ANGIOTENSIN-I-CONVERTING ENZYME INHIBITORY PEPTIDES IN THE RENIN-ANGIOTENSIN AND KALLIKREIN KININ SYSTEMS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017; 14:383-406. [PMID: 28573254 PMCID: PMC5446464 DOI: 10.21010/ajtcam.v14i2.39] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors. METHOD Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar. RESULTS The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa. CONCLUSION The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed.
Collapse
Affiliation(s)
- Sivananthan Manoharan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| | - Adawiyah Suriza Shuib
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
- University of Malaya Centre for Proteomic Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
| | - Noorlidah Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| |
Collapse
|
25
|
Feng S, Limwachiranon J, Luo Z, Shi X, Ru Q. Preparation and purification of angiotensin-converting enzyme inhibitory peptides from hydrolysate of shrimp (Litopenaeus vannamei
) shell waste. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simin Feng
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Xudan Shi
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Qiaomei Ru
- Hangzhou Wanxiang Polytechnic; Hangzhou 310023 China
| |
Collapse
|
26
|
Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.02.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Two novel antioxidant nonapeptides from protein hydrolysate of skate (Raja porosa) muscle. Mar Drugs 2015; 13:1993-2009. [PMID: 25854645 PMCID: PMC4413196 DOI: 10.3390/md13041993] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/17/2022] Open
Abstract
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2-· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.
Collapse
|
28
|
Wu S, Feng X, Lan X, Xu Y, Liao D. Purification and identification of Angiotensin-I Converting Enzyme (ACE) inhibitory peptide from lizard fish (Saurida elongata) hydrolysate. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Lan X, Liao D, Wu S, Wang F, Sun J, Tong Z. Rapid purification and characterization of angiotensin converting enzyme inhibitory peptides from lizard fish protein hydrolysates with magnetic affinity separation. Food Chem 2015; 182:136-42. [PMID: 25842319 DOI: 10.1016/j.foodchem.2015.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
In this study, angiotensin converting enzyme (ACE) inhibitory peptides from lizard fish protein hydrolysate with neutral protease were purified through magnetic affinity separation. Magnetic agarose microsphere was prepared by reverse-phase microemulsion method, and its surface was modified with epoxy groups to immobilize ACE as a magnetic affinity medium (MAM-ACE) and then mixed with lizard fish ultrafiltration hydrolysate (<5 kDa). The MAM-ACE was recovered by a magnet. The bound peptides were released by 1M NaCl and further purified by reverse-phase high-performance liquid chromatography. The amino acid sequence of the peptide with the highest ACE inhibitory activity was identified as Gly-Met-Lys-Cys-Ala-Phe, and its IC50 was 45.7 ± 1.1 μM. The result indicates that MAM-ACE is a faster and more efficient method for purifying micro-bioactive peptides from food protein complex mixtures compared with ion exchange and gel chromatography.
Collapse
Affiliation(s)
- Xiongdiao Lan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Shanguang Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhua Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhangfa Tong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
30
|
Wisuthiphaet N, Kongruang S, Chamcheun C. Production of Fish Protein Hydrolysates by Acid and Enzymatic Hydrolysis. ACTA ACUST UNITED AC 2015. [DOI: 10.12720/jomb.4.6.466-470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Liu R, Zhu Y, Chen J, Wu H, Shi L, Wang X, Wang L. Characterization of ACE inhibitory peptides from Mactra veneriformis hydrolysate by nano-liquid chromatography electrospray ionization mass spectrometry (Nano-LC-ESI-MS) and molecular docking. Mar Drugs 2014; 12:3917-28. [PMID: 24983637 PMCID: PMC4113806 DOI: 10.3390/md12073917] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022] Open
Abstract
Food-derived bioactive compounds are gaining increasing significance in life sciences. In the present study, we identified angiotensin I-converting enzyme (ACE)-inhibitory peptides from Mactra veneriformis hydrolysate using a nano-LC-MS/MS method. Mactra veneriformis hydrolysate was first separated into four fractions (F1–F4) based on molecular weight by ultrafiltration. The fraction with molecular weight lower than 1 kDa (F1) showed the highest ACE inhibitory activity. F1 was then analyzed by a high throughput nano-LC-MS/MS method and sequences of peptides in F1 were calculated accordingly. The 27 peptides identified as above were chemically synthesized and tested for ACE-inhibitory activity. The hexapeptide VVCVPW showed the highest potency with an IC50 value of 4.07 μM. We then investigated the interaction mechanism between the six most potent peptides and ACE by molecular docking. Our docking results suggested that the ACE inhibitory peptides bind to ACE via interactions with His383, His387, and Glu411 residues. Particularly, similar to the thiol group of captopril, the cysteine thiol group of the most potent peptide VVCVPW may play a key role in the binding of this peptide to the ACE active site.
Collapse
Affiliation(s)
- Rui Liu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yunhan Zhu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jiao Chen
- China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Hao Wu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Lei Shi
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xinzhi Wang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Lingchong Wang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
32
|
Identification of the major ACE-inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate from cuttlefish wastewater. Mar Drugs 2014; 12:1390-405. [PMID: 24619242 PMCID: PMC3967217 DOI: 10.3390/md12031390] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/15/2023] Open
Abstract
The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with alcalase of the retained fraction. Alcalase produced ACE inhibitors reaching the highest activity (IC50 = 76.8 ± 15.2 μg mL−1) after 8 h of proteolysis. Sequential ultrafiltration of the 8 h hydrolysate with molecular weight cut-off (MWCO) membranes of 10 and 1 kDa resulted in the increased activity of each permeate, with a final IC50 value of 58.4 ± 4.6 μg mL−1. Permeate containing peptides lower than 1 kDa was separated by reversed-phase high performance liquid chromatography (RP-HPLC). Four fractions (A–D) with potent ACE inhibitory activity were isolated and their main peptides identified using high performance liquid chromatography coupled to an electrospray ion trap Fourier transform ion cyclotron resonance-mass spectrometer (HPLC-ESI-IT-FTICR) followed by comparison with databases and de novo sequencing. The amino acid sequences of the identified peptides contained at least one hydrophobic and/or a proline together with positively charged residues in at least one of the three C-terminal positions. The IC50 values of the fractions ranged from 1.92 to 8.83 μg mL−1, however this study fails to identify which of these peptides are ultimately responsible for the potent antihypertensive activity of these fractions.
Collapse
|
33
|
Peptide enriched functional food adjunct from soy whey: A statistical optimization study. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0050-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
He S, Franco C, Zhang W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|