1
|
Raymer R, Jessa SM, Cooper WJ, Olson MB. The effects of diatom polyunsaturated aldehydes on embryonic and larval zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:292-303. [PMID: 39613930 DOI: 10.1007/s10646-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Marine diatoms are pervasive in many planktonic and benthic environments and represent an important food source for a wide range of species. Some diatoms produce polyunsaturated aldehydes (PUAs) as defensive toxins. PUA exposure is known to reduce the fecundity of invertebrate grazers like copepods and echinoderm larvae, but little is known about the effects of PUAs on vertebrates. Many fish species are likely to come into close contact with diatoms. Many may deposit eggs on diatom-coated substrates, consume diatoms as larvae, and/or feed heavily on zooplankters that may be gut-loaded with diatoms. The purpose of this study was to test whether dissolved diatom PUAs affect the early life stages of a model fish, Danio rerio (zebrafish). To test this, zebrafish embryos and larvae were exposed to proportionally increasing mixtures of the dissolved diatom PUAs 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal. Under PUA exposure, three metrics of fitness were assessed: embryo heart rate, larval size at hatch, and pre-feeding mortality rate. Zebrafish embryos exposed at 24 h post fertilization (hpf) experienced decreased average heart rate after 2 days of PUA exposure. Embryos 24 hpf exposed to PUA mixtures for 6 days showed a reduction in size in comparison to embryos from controls. Embryos exposed to PUAs from 2 hpf until death showed lower survivorship compared to larvae in controls. The results of this study suggest that larval fish that are sympatric with PUA producing diatoms during their embryonic and larval stages may be susceptible to detrimental effects from PUA exposure.
Collapse
Affiliation(s)
- Rachel Raymer
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA
| | - Soraya M Jessa
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA
| | - W James Cooper
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA
| | - M Brady Olson
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA, USA.
| |
Collapse
|
2
|
Johnson J, Olson MB, Parker I, Hoffmeister I, Lemkau K. Widespread Production of Polyunsaturated Aldehydes by Benthic Diatoms of the North Pacific Ocean's Salish Sea. J Chem Ecol 2024; 50:290-298. [PMID: 38644438 DOI: 10.1007/s10886-024-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Diatoms are key primary producers across marine, freshwater, and terrestrial ecosystems. They are responsible for photosynthesis and secondary production that, in part, support complex food webs. Diatoms can produce phytochemicals that have transtrophic ecological effects which increase their competitive fitness. Polyunsaturated aldehydes (PUAs) are one class of diatom-derived phytochemicals that are known to have allelopathic and anti-herbivory properties. The anti-herbivory capability of PUAs results from their negative effect on grazer fecundity. Since their discovery, research has focused on their production by pelagic marine diatoms, and their effects on copepod egg production, hatching success, and juvenile survival and development. Few investigations have explored PUA production by the prolific suite of benthic marine diatoms, despite their importance to coastal trophic systems. In this study, we tested eight species of benthic diatoms for the production of the bioactive PUAs 2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal. Benthic diatom species were isolated from the Salish Sea, an inland sea within the North Pacific ecosystem. All species were found to be producers of at least two PUAs in detectable concentrations, with five species producing all three PUAs in quantifiable concentrations. Our results indicate that production of PUAs from Salish Sea benthic diatoms may be widespread, and thus these compounds may contribute to benthic coastal food web dynamics through heretofore unrecognized pathways. Future studies should expand the geographic scope of investigations into benthic diatom PUA production and explore the effects of benthic diatoms on benthic consumer fecundity.
Collapse
Affiliation(s)
- Jeremy Johnson
- Departments of Biology and Chemistry, Western Washington University, Bellingham, Washington, USA.
| | - M Brady Olson
- Departments of Biology and Marine and Coastal Science, Western Washington University, Bellingham, WA, USA
| | - Ian Parker
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Isaac Hoffmeister
- Department of Marine and Coastal Science, Western Washington University, Bellingham, WA, USA
| | - Karin Lemkau
- Departments of Chemistry and Marine and Coastal Science, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
3
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar Drugs 2020; 18:md18070342. [PMID: 32629777 PMCID: PMC7401250 DOI: 10.3390/md18070342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.
Collapse
|
5
|
Esposito R, Ruocco N, Albarano L, Ianora A, Manfra L, Libralato G, Costantini M. Combined Effects of Diatom-Derived Oxylipins on the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2020; 21:ijms21030719. [PMID: 31979078 PMCID: PMC7036778 DOI: 10.3390/ijms21030719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea urchin Paracentrotus lividus embryonic development by testing individual compounds and mixtures of the same chemical group. Here, we investigated the combined effects of these compounds on sea urchin development at the morphological and molecular level for the first time. Our results demonstrated that oxylipin mixtures had stronger effects on sea urchin embryos compared with individual compounds, confirming that PUAs induce malformations and HEPEs cause developmental delay. This harmful effect was also confirmed by molecular analysis. Twelve new genes, involved in stress response and embryonic developmental processes, were isolated from the sea urchin P. lividus; these genes were found to be functionally interconnected with 11 genes already identified as a stress response of P. lividus embryos to single oxylipins. The expression levels of most of the analyzed genes targeted by oxylipin mixtures were involved in stress, skeletogenesis, development/differentiation, and detoxification processes. This work has important ecological implications, considering that PUAs and HEPEs represent the most abundant oxylipins in bloom-forming diatoms, opening new perspectives in understanding the molecular pathways activated by sea urchins exposed to diatom oxylipins.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Correspondence: ; Tel.: +39-081-5833-3285
| |
Collapse
|
6
|
Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9:517. [PMID: 30679744 PMCID: PMC6345956 DOI: 10.1038/s41598-018-37546-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal, derive from the oxidation of fatty acids and have cytotoxic and anticancer effects. PUAs, tested separately, induce malformations in sea urchin Paracentrotus lividus embryos. Decadienal induces the worst malformations and lowest survival rates. Interestingly, decadienal, heptadienal and octadienal place in motion several genes to counteract their negative effects. To date, no studies are available reporting on the effects of PUA mixtures on marine invertebrates. Here we test binary and ternary mixtures on embryonic development of P. lividus. Our findings demonstrate that mixtures of PUAs act (i) at morphological level in synergistic way, being much more severe compared to individual PUAs; (ii) at molecular level also reveal an additive effect, affecting almost all fifty genes, previously tested using individual PUAs. This study is relevant from an ecological point of view since diatoms are a major food source for both pelagic and benthic organisms. This work opens new perspectives for understanding the molecular mechanisms that marine organisms use in reacting to environmental natural toxin mixtures such as diatom PUAs.
Collapse
|
7
|
Torres-Águila NP, Martí-Solans J, Ferrández-Roldán A, Almazán A, Roncalli V, D'Aniello S, Romano G, Palumbo A, Albalat R, Cañestro C. Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun Biol 2018; 1:121. [PMID: 30272001 PMCID: PMC6123688 DOI: 10.1038/s42003-018-0127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating environmental hazards than could affect appendicularians is of prime ecological interest because they are among the most abundant components of the mesozooplankton. This work shows that embryo development of the appendicularian Oikopleura dioica is compromised by diatom bloom-derived biotoxins, even at concentrations in the same range as those measured after blooms. Developmental gene expression analysis of biotoxin-treated embryos uncovers an aberrant golf ball-like phenotype affecting morphogenesis, midline convergence, and tail elongation. Biotoxins induce a rapid upregulation of defensome genes, and considerable delay and silencing of zygotic transcription of developmental genes. Upon a possible future intensification of blooms associated with ocean warming and acidification, our work puts an alert on the potential impact that an increase of biotoxins may have on marine food webs, and points to defensome genes as molecular biosensors that marine ecologists could use to monitor the genetic stress of natural populations exposed to microalgal blooms.
Collapse
Affiliation(s)
- Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alba Almazán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Toxigenic effects of two benthic diatoms upon grazing activity of the sea urchin: morphological, metabolomic and de novo transcriptomic analysis. Sci Rep 2018; 8:5622. [PMID: 29618786 PMCID: PMC5884808 DOI: 10.1038/s41598-018-24023-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
Diatoms are unicellular algae playing a key role as photosynthetic organisms in the world's ocean food webs. The chemical ecology of planktonic diatoms is well documented, but few studies have reported on the effects of benthic diatoms on their consumers, also due to difficulties in the collection, quantification and massive culturing of benthic species. Here for the first time we investigate the effects of feeding on two abundantly occurring benthic diatoms, Nanofrustulum shiloi and Cylindrotheca closterium, isolated from the leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Adult P. lividus were fed for one month on diets of either one of the two diatoms and on the green alga Ulva rigida, used as a feeding control. By combining morphological, metabolomic and de novo transcriptomic approaches, we demonstrate toxigenic effect on embryos generated by females fed with these benthic diatoms. Furthermore, chemical analysis reveal the presence of polyunsaturated aldehydes only for N. shiloi, and a high production of other oxylipins (cytotoxic compounds on their grazers and on cancer cell lines) for both diatoms, including some additional peaks not correlated to the canonic oxylipins commonly observed in planktonic diatoms. These findings open new perspectives in the study of diatom secondary metabolites influencing their grazers.
Collapse
|
9
|
Lauritano C, Romano G, Roncalli V, Amoresano A, Fontanarosa C, Bastianini M, Braga F, Carotenuto Y, Ianora A. New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. HARMFUL ALGAE 2016; 55:221-229. [PMID: 28073535 DOI: 10.1016/j.hal.2016.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 05/16/2023]
Abstract
Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy to higher trophic levels. However, these unicellular organisms produce secondary metabolites deriving from the oxidation of fatty acids, collectively termed oxylipins, with negative effects on predators, such as copepods, that feed on them (e.g. reduction in survival, egg production and hatching success) and, indirectly, on higher trophic levels. Here, a multidisciplinary study (oxylipin measurements, copepod fitness, gene expression analyses, chlorophyll distribution, phytoplankton composition, physico-chemical characteristics) was carried out at the end of the spring diatom bloom in April 2011 in the Northern Adriatic Sea (Mediterranean Sea) in order to deeply investigate copepod-diatom interactions, chemical communication and response pathways. The results show that the transect with the lowest phytoplankton abundance had the lowest copepod egg production and hatching success, but the highest oxylipin concentrations. In addition, copepods in both the analyzed transects showed increased expression levels of key stress-related genes (e.g. heat-shock proteins, catalase, glutathione S-transferase, aldehyde dehydrogenase) compared to control laboratory conditions where copepods were fed with the dinoflagellate Prorocentrum minimum which does not produce any oxylipins. New oxylipins that have never been reported before for microalgae are described for the first time, giving new insights into the complex nature of plant-animal signaling and communication pathways at sea. This is also the first study providing insights on the copepod response during a diatom bloom at the molecular level.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Monte Sant'Angelo, 80126 Napoli, Italy
| | - Carolina Fontanarosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli, Monte Sant'Angelo, 80126 Napoli, Italy
| | - Mauro Bastianini
- Istituto di Scienze Marine CNR, Castello 2737/f, I30122 Venice, Italy
| | - Federica Braga
- Istituto di Scienze Marine CNR, Castello 2737/f, I30122 Venice, Italy
| | | | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|