1
|
Gallo A, Penna YM, Russo M, Rosapane M, Tosti E, Russo GL. An organic extract from ascidian Ciona robusta induces cytotoxic autophagy in human malignant cell lines. Front Chem 2024; 12:1322558. [PMID: 38389727 PMCID: PMC10881676 DOI: 10.3389/fchem.2024.1322558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
The last decades have seen an increase in the isolation and characterization of anticancer compounds derived from marine organisms, especially invertebrates, and their use in clinical trials. In this regard, ascidians, which are included in the subphylum Tunicata, represent successful examples with two drugs, Aplidine© and Yondelis© that reached the market as orphan drugs against several malignancies. Here, we report that an organic extract prepared from homogenized tissues of the Mediterranean ascidian Ciona robusta inhibited cell proliferation in HT-29, HepG2, and U2OS human cells with the former being the most sensitive to the extract (EC50 = 250 μg/mL). We demonstrated that the ascidian organic extract was not cytotoxic on HT-29 cells that were induced to differentiate with sodium butyrate, suggesting a preference for the mixture for the malignant phenotype. Finally, we report that cell death induced by the organic extract was mediated by the activation of a process of cytotoxic autophagy as a result of the increased expression of the LC3-II marker and number of autophagic vacuoles, which almost doubled in the treated HT-29 cells. In summary, although the detailed chemical composition of the Ciona robusta extract is still undetermined, our data suggest the presence of bioactive compounds possessing anticancer activity.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Marco Rosapane
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| |
Collapse
|
2
|
Zhang X, Zhang Z, Zou X, Wang Y, Qi J, Han S, Xin J, Zheng Z, Wei L, Zhang T, Zhang S. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway. Front Cell Dev Biol 2024; 11:1324561. [PMID: 38313000 PMCID: PMC10834758 DOI: 10.3389/fcell.2023.1324561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a worldwide spinal degenerative disease. Low back pain (LBP) is frequently caused by a variety of conditions brought on by IDD, including IVD herniation and spinal stenosis, etc. These conditions bring substantial physical and psychological pressure and economic burden to patients. IDD is closely tied with the structural or functional changes of the IVD tissue and can be caused by various complex factors like senescence, genetics, and trauma. The IVD dysfunction and structural changes can result from extracellular matrix (ECM) degradation, differentiation, inflammation, oxidative stress, mechanical stress, and senescence of IVD cells. At present, the treatment of IDD is basically to alleviate the symptoms, but not from the pathophysiological changes of IVD. Interestingly, the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is involved in many processes of IDD, including inflammation, ECM degradation, apoptosis, senescence, proliferation, oxidative stress, and autophagy. These activities in degenerated IVD tissue are closely relevant to the development trend of IDD. Hence, the p38 MAPK signaling pathway may be a fitting curative target for IDD. In order to better understand the pathophysiological alterations of the intervertebral disc tissue during IDD and offer potential paths for targeted treatments for intervertebral disc degeneration, this article reviews the purpose of the p38 MAPK signaling pathway in IDD.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Xiaosong Zou
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Lin Wei
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, China
| |
Collapse
|
3
|
Feng L, Lu CK, Wu J, Chan LL, Yue J. Identification of Anhydrodebromoaplysiatoxin as a Dichotomic Autophagy Inhibitor. Mar Drugs 2023; 21:46. [PMID: 36662219 PMCID: PMC9862050 DOI: 10.3390/md21010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Dysfunctional autophagy is associated with various human diseases, e.g., cancer. The discovery of small molecules modulating autophagy with therapeutic potential could be significant. To this end, we screened the ability of a series of metabolites isolated from marine microorganisms to modulate autophagy. Anhydrodebromoaplysiatoxin (ADAT), a metabolite yielded by the marine red algae Gracilaria coronopifolia, inhibited autophagosome-lysosome fusion in mammalian cells, thereby inducing the accumulation of autophagosomes. Treatment of cells with ADAT alkalinized lysosomal pH. Interestingly, ADAT also activated the mTOR/p70S6K/FoxO3a signaling pathway, likely leading to the inhibition of autophagy induction. ADAT had little effect on apoptosis. Our results suggest that ADAT is a dichotomic autophagy inhibitor that inhibits both late-stage (autophagosome-lysosome fusion) and early-stage (autophagy induction) autophagy.
Collapse
Affiliation(s)
- Limin Feng
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
- Department of Bioscience and Institute of Genomics, National Yang Ming University, Taipei 11221, Taiwan
| | - Jiajun Wu
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Leo Lai Chan
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianbo Yue
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan 215316, China
| |
Collapse
|
4
|
The role of K63-linked polyubiquitin in several types of autophagy. Biol Futur 2022; 73:137-148. [DOI: 10.1007/s42977-022-00117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
AbstractLysosomal-dependent self-degradative (autophagic) mechanisms are essential for the maintenance of normal homeostasis in all eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified, based on how the cellular self material can incorporate into the lysosomal lumen. Ubiquitination, a well-known and frequently occurred posttranslational modification has essential role in all cell biological processes, thus in autophagy too. The second most common type of polyubiquitin chain is the K63-linked polyubiquitin, which strongly connects to some self-degradative mechanisms in the cells. In this review, we discuss the role of this type of polyubiquitin pattern in numerous autophagic processes.
Collapse
|
5
|
Zhang H, Huang T, Yuan S, Long Y, Tan S, Niu G, Zhang P, Yang M. Circ_0020123 plays an oncogenic role in non-small cell lung cancer depending on the regulation of miR-512-3p/CORO1C. Thorac Cancer 2022; 13:1406-1418. [PMID: 35388975 PMCID: PMC9058299 DOI: 10.1111/1759-7714.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is one of the leading causes responsible for cancer‐associated death globally. The aim of this study was to illustrate the function of circular RNA_0020123 (circ_0020123) in NSCLC progression and its associated mechanism. Methods RNA and protein expression was determined by reverse transcription‐quantitative polymerase chain reaction (RT‐qPCR) and western blot assay. Cell proliferation, migration, invasion, angiogenesis, apoptosis and autophagy were analyzed to assess the role of circ_0020123/microRNA‐512‐3p (miR‐512‐3p)/coronin 1C (CORO1C) axis in NSCLC cells. Tumorigenesis in nude mice was analyzed to determine the in vivo role of circ_0020123. The intermolecular target relation was confirmed by dual‐luciferase reporter and RNA immunoprecipitation (RIP) assays. Results Circ_0020123 expression was aberrantly upregulated in NSCLC tissues and cell lines. Circ_0020123 interference markedly restrained cell proliferation, migration, invasion, angiogenesis and autophagy and induced cell apoptosis of NSCLC cells. Circ_0020123 knockdown suppressed xenograft tumor growth in vivo. Circ_0020123 acted as a molecular sponge for miR‐512‐3p. Circ_0020123 silencing‐induced effects in NSCLC cells were largely reversed by the knockdown of miR‐512‐3p. miR‐512‐3p interacted with the 3′ untranslated region (3′UTR) of CORO1C. CORO1C overexpression largely reversed miR‐512‐3p accumulation‐induced influences in NSCLC cells. Circ_0020123 positively regulated CORO1C expression by sponging miR‐512‐3p in NSCLC cells. Conclusion Circ_0020123 aggravated NSCLC progression by binding to miR‐512‐3p to induce CORO1C expression, which provided new potential targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Heng Zhang
- The Affiliated Nanhua Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Huang
- The Affiliated Nanhua Hospital, Department of Pain Treatment, Hengyang Medical School, University of South China, Hengyang, China
| | - Shisi Yuan
- The Affiliated Nanhua Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuxi Long
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuai Tan
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Guoliang Niu
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Puhua Zhang
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiling Yang
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Alves J, Gaspar H, Silva J, Alves C, Martins A, Teodoro F, Susano P, Pinteus S, Pedrosa R. Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline. Mar Drugs 2021; 19:632. [PMID: 34822503 PMCID: PMC8625174 DOI: 10.3390/md19110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1-C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.
Collapse
Affiliation(s)
- Joana Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; (J.A.); (J.S.); (C.A.); (F.T.); (P.S.); (S.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Escola Superior de Turismo e Tecnologia do Mar, Politécnico de Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
7
|
Zhang HJ, Liao HY, Bai DY, Wang ZQ, Xie XW. MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration. Biomed Pharmacother 2021; 143:112170. [PMID: 34536759 DOI: 10.1016/j.biopha.2021.112170] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a chronic skeletal muscle degenerative disease, which is considered the main cause of low back pain. It seriously affects the quality of life of patients and consequently brings a heavy economic burden to their families and the society. Although IDD is considered a natural process in degenerative lesions, it is mainly caused by aging, trauma, genetic susceptibility and other factors. It is closely related to changes in the tissue structure and function, including the progressive destruction of extracellular matrix, cell aging, cell death of the intervertebral disc (IVD), inflammation, and impairment of tissue biomechanical function. Currently, the treatment of IDD is aimed at alleviating symptoms rather than at targeting pathological changes in the IVD. Furthermore, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway is closely related to various pathological processes in IDD, and the activation of the MAPK/ERK pathway promotes the degradation of the IVD extracellular matrix, cell aging, apoptosis, and inflammatory responses. It also induces autophagy and oxidative stress that accelerate the IVD process. In our current review, we summarize the latest developments in the negative regulation of IDD after activation of the MAPK/ERK signaling pathway and emphasize on its influence on IDD. Targeting this pathway may become an attractive treatment strategy for IDD in the near future.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- Fist Affiliated Hospital of Ganan Medical University, 23 Qingnian Road, Ganzhou 342800, PR China
| | - Deng-Yan Bai
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China
| | - Zhi-Qiang Wang
- Fist Affiliated Hospital of Ganan Medical University, 23 Qingnian Road, Ganzhou 342800, PR China
| | - Xing-Wen Xie
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Ahmed S, Hasan MM, Aschner M, Mirzaei H, Alam W, Mukarram Shah SM, Khan H. Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cell Signal 2021; 87:110142. [PMID: 34487816 DOI: 10.1016/j.cellsig.2021.110142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in humans. It is characterized by excessive cell growth and accelerated intrusion of normal brain tissue along with a poor prognosis. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, is largely ineffective, with high mortality and recurrence rates. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The physiological effects of marine peptides in glioblastoma are mediated by a range of pathways, including apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability; autophagy and metabolic enzymes downregulation. Herein, we address the efficacy of marine peptides as putative safe therapeutic agents for glioblastoma coupled with detail molecular mechanisms.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Waqas Alam
- Department of Pharmacy, University of Swabi, Pakistan
| | | | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan.
| |
Collapse
|
9
|
Wang Y, Li J, Shao C, Tang X, Du Y, Xu T, Zhao Z, Hu H, Sheng Y, Hu C, Xi Y. Systematic profiling of diagnostic and prognostic value of autophagy-related genes for sarcoma patients. BMC Cancer 2021; 21:58. [PMID: 33435917 PMCID: PMC7802146 DOI: 10.1186/s12885-020-07596-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Autophagy-related genes (ARGs) have been confirmed to have an important role in tumorigenesis and tumor microenvironment formation. Nevertheless, a systematic analysis of ARGs and their clinical significance in sarcoma patients is lacking. METHODS Gene expression files from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx) were used to select differentially expressed genes (DEGs). Differentially expressed ARGs (DEARGs) were determined by matching the DEG and HADb gene sets, which were evaluated by functional enrichment analysis. Unsupervised clustering of the identified DEARGs was conducted, and associations with tumor microenvironment (TME), immune checkpoints, and immune cells were analyzed simultaneously. Two prognostic signatures, one for overall survival (OS) and one for disease-free survival (DFS), were established and validated in an independent set. RESULTS In total, 84 DEARGs and two clusters were identified. TME scores, five immune checkpoints, and several types of immune cells were found to be significantly different between two clusters. Two prognostic signatures incorporating DEARGs showed favorable discrimination and were successfully validated. Two nomograms combining signature and clinical variables were generated. The C-indexes were 0.818 and 0.747 for the OS and DFS nomograms, respectively. CONCLUSION This comprehensive analyses of the ARG landscape in sarcoma showed novel ARGs related to carcinogenesis and the immune microenvironment. These findings have implications for prognosis and therapeutic responses, which reveal novel potential prognostic biomarkers, promote precision medicine, and provide potential novel targets for immunotherapy.
Collapse
Affiliation(s)
- Yuanhe Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jianyi Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Cheng Shao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xiaojie Tang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China.,Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yukun Du
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Tongshuai Xu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Zheng Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Huiqiang Hu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yingyi Sheng
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China.
| | - Yongming Xi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Mar Drugs 2020; 18:md18090482. [PMID: 32967369 PMCID: PMC7551687 DOI: 10.3390/md18090482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1–222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
11
|
Bai C, Zhang Z, Zhou L, Zhang HY, Chen Y, Tang Y. Repurposing Ziyuglycoside II Against Colorectal Cancer via Orchestrating Apoptosis and Autophagy. Front Pharmacol 2020; 11:576547. [PMID: 33071789 PMCID: PMC7533566 DOI: 10.3389/fphar.2020.576547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023] Open
Abstract
Effective chemotherapy drugs for colorectal cancer remain a challenge. In this research, Ziyuglycoside II (Ziyu II), exhibits considerable antitumor activity against CRC cells both in vitro and in vivo. The results showed that Ziyu II induced apoptosis through the accumulation of reactive oxygen species (ROS), which was necessary for Ziyu II to inhibit colorectal cancer cells. Intriguingly, The treatment of Ziyu II triggered complete autophagic flux in CRC cells. Inhibition of autophagy partially reversed Ziyu II-induced growth inhibition, demonstrating a cytotoxic role of autophagy in response to Ziyu II-treated. Mechanism indicated that Ziyu II-induced autophagy by inhibiting Akt/mTOR pathway. Akt reactivation partially reduced Ziyu II-induced LC3-II turnover and LC3 puncta accumulation. Especially, Ziyu II improves the sensitivity of 5-fluorouracil which is the first-line chemotherapy drug in colorectal cancer cells. This research provides novel insight into the molecular mechanism of Ziyu II’s anti-proliferation, including apoptosis and autophagy, and lays a foundation for the potential application of Ziyu II in clinical CRC treatment.
Collapse
Affiliation(s)
- Can Bai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan-Yu Zhang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Zhao XX, Cho H, Lee S, Woo JS, Song MY, Cheng XW, Lee KH, Kim W. BAY60-2770 attenuates doxorubicin-induced cardiotoxicity by decreased oxidative stress and enhanced autophagy. Chem Biol Interact 2020; 328:109190. [PMID: 32652078 DOI: 10.1016/j.cbi.2020.109190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Doxorubicin (DOX) administration decreases cardiac soluble guanylate cyclase (sGC) activity. We hypothesized that bypassing impaired NO-sGC-cGMP pathway resulting from the activation of oxidized and heme-free soluble guanylate cyclase (sGC) could be a therapeutic target for DOX-mediated cardiomyopathy (DOX-CM). The present study investigated the therapeutic roles and mechanism of BAY60-2770, an activator of oxidized sGC, in alleviating DOX-CM. METHODS H9c2 cardiomyocytes were pretreated with BAY60-2770 followed by DOX. Cell viability and intracellular reactive oxygen species (ROS) were subsequently measured. To determine the role BAY60-2770 in mitochondrial ROS generation and mitochondrial membrane potential, we examined mitoSOX RED and TMRE fluorescence under DOX exposure. As animal experiments, rats were orally administered with 5 mg/kg of BAY60-2770 at 1 h prior to every DOX treatment and then assessed by echocardiography and apoptotic marker and autophagy. RESULTS BAY60-2770 ameliorated cell viability and DOX-induced oxidative stress in H9c2 cells, which was mediated by PKG activation. Mitochondrial ROS and TMRE fluorescence were attenuated by BAY60-2770 in DOX-treated H9c2 cells. DOX-induced caspase-3 activation decreased after pretreatment with BAY60-2770 in vivo and in vitro. Echocardiography showed that BAY60-2770 significantly improved DOX-induced myocardial dysfunction. Autophagosome was increased by BAY60-2770 in vivo. CONCLUSIONS BAY60-2770 appears to mitigate DOX-induced mitochondrial ROS, membrane potential loss, autophagy, and subsequent apoptosis, leading to protection of myocardial injury and dysfunction. These novel results highlighted the therapeutic potential of BAY60-2770 in preventing DOX-CM.
Collapse
Affiliation(s)
- Xiao-Xiao Zhao
- Department of Internal Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Jong Shin Woo
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Min-Young Song
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, China
| | - Kyung Hye Lee
- Department of Biotechnology, Cha University, Pocheon, South Korea.
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
13
|
The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. Int J Mol Sci 2020; 21:ijms21124196. [PMID: 32545524 PMCID: PMC7352190 DOI: 10.3390/ijms21124196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) have an essential role in several cell biological processes via removing the various ubiquitin patterns as posttranslational modification forms from the target proteins. These enzymes also contribute to the normal cytoplasmic ubiquitin pool during the recycling of this molecule. Autophagy, a summary name of the lysosome dependent self-degradative processes, is necessary for maintaining normal cellular homeostatic equilibrium. Numerous forms of autophagy are known depending on how the cellular self-material is delivered into the lysosomal lumen. In this review we focus on the colorful role of DUBs in autophagic processes and discuss the mechanistic contribution of these molecules to normal cellular homeostasis via the possible regulation forms of autophagic mechanisms.
Collapse
|
14
|
Chen WX, Zhou J, Zhou SS, Zhang YD, Ji TY, Zhang XL, Wang SM, Du T, Ding DG. Microvesicles derived from human Wharton's jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100. Stem Cell Res Ther 2020; 11:113. [PMID: 32169098 PMCID: PMC7071666 DOI: 10.1186/s13287-020-01617-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives Microvesicles (MVs) derived from human Wharton’s jelly mesenchymal stem cells (MSC-MVs) were demonstrated to ameliorate acute lung injury (ALI). We have previously found that MSC-MV-transferred hepatocyte growth factor was partly involved in their therapeutic effects. Since MSC-MVs also contained a substantial quantity of miR-100, which plays an important role in lung cancer and injury, we speculated that miR-100 might similarly account for a part of the therapeutic effects of MSC-MVs. Methods MSCs were transfected with miR-100 inhibitor to downregulate miR-100 in MSC-MVs. A rat model of ALI and cell injury in rat type II alveolar epithelial cell line (L2) was induced by bleomycin (BLM). A co-culture model of alveolar epithelial cells and MSC-MVs was utilized to examine the therapeutic role of MSC-MVs and mechanism. Results MSC-MV treatment attenuated BLM-induced apoptosis and inflammation in BLM-treated L2 cells and ameliorated BLM-induced lung apoptosis, inflammation, and fibrosis in BLM-induced ALI rats. The beneficial effect of MSC-MVs was partly eliminated when miR-100 was knocked down in MSCs. Moreover, MSC-MV-transferred miR-100 mediated the therapeutic effect of MSC-MVs in ALI through enhancing autophagy by targeting mTOR. Conclusion MSC-MVs enhance autophagy and ameliorate ALI partially via delivery of miR-100.
Collapse
Affiliation(s)
- Wen-Xia Chen
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Jun Zhou
- Department of Urology, Henan University People's Hospital; Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Sha-Sha Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Yu-Dan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Tong-Yu Ji
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiao-Li Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Shu-Min Wang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | - Tao Du
- Department of Urology, Henan University People's Hospital; Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China. .,Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - De-Gang Ding
- Department of Urology, Henan University People's Hospital; Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.,Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| |
Collapse
|
15
|
Pei X, Li Y, Zhu L, Zhou Z. Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle 2020; 19:906-917. [PMID: 32150490 DOI: 10.1080/15384101.2020.1731649] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our previous work has verified that astrocytes (AS)-derived exosomes (AS-Exo) inhibited autophagy and ameliorated neuronal damage in experimental ischemic stroke. However, the mechanism of AS-Exo regulation of autophagy remains unclear. The aim of this study was to investigate the regulatory mechanism of AS-Exo on neuronal autophagy. The mouse hippocampal neuronal cell line HT-22 was cultured in oxygen and glucose deprivation (OGD) condition to mimic ischemic injury. The primary astrocytes were used to isolate exosomes. Exosome labeling and uptake by HT-22 cells were observed by confocal laser microscopy. miR-190b expression was determined by qRT-PCR. HT-22 cell vitality and apoptosis were determined by CCK-8 assay and TUNEL staining, respectively. Levels of TNF-α, IL-6 and IL-1β were analyzed by ELISA. Protein levels of apoptosis-related cleaved caspase-3, Bax, Bcl-2 and autophagy-related Beclin-1, LC3-I/II, Atg7, P62 were determined by western blot. A dual-luciferase reporter assay was performed to confirm the direct interaction between miR-190b and Atg7. miR-190b expression in AS-Exo was found to be significantly higher than that in AS. AS-Exo-mediated transfer of miR-190b attenuated OGD-induced neuronal apoptosis via suppressing autophagy. Moreover, Atg7 was identified as a target of miR-190b. AS-Exo-mediated transfer of miR-190b regulated autophagy by targeting Atg7. Collectively, our data indicated that AS-Exo transferred miR-190b to inhibit OGD-induced autophagy and neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaoxi Pei
- Cerebrovascular Division, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yucheng Li
- Cerebrovascular Division, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Liangfu Zhu
- Cerebrovascular Division, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Zhilong Zhou
- Cerebrovascular Division, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Marine Drugs Acting as Autophagy Modulators. Mar Drugs 2020; 18:md18010053. [PMID: 31947523 PMCID: PMC7024146 DOI: 10.3390/md18010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/25/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
|
17
|
Ge C, An N, Li L, Wei W, Ji L, Yuan N, Fang Y, Xu L, Song L, Zhang J, Song C, Wang J, Zhang S. Autophagy-deficient mice are more susceptible to engrafted leukemogenesis. Blood Cells Mol Dis 2019; 77:129-136. [PMID: 31059942 DOI: 10.1016/j.bcmd.2019.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022]
Abstract
Autophagy is primarily considered as an important survival mechanism for both normal cells and cancer cells in response to metabolic stress or chemotherapy; but the role of autophagy in leukemogenesis is not fully understood. The aim of this study is to explore the role of intrinsic autophagy in the leukemogenesis of B-cell acute lymphoblastic leukemia (B-ALL). In this study, conditional knockout mice Atg7f/f;Ubc-Cre, in which an autophagy-essential gene Atg7 is universally deleted, were used as recipients, B-ALL cell line 697 was used as donor cells to generate leukemia mouse model. Compared to wild-type mice, Atg7 knockout mice were more susceptible to engrafted leukemogenesis, shown by increase in white blood cells, lymphocytes, and platelets, decrease in HSPC number and its colony-forming unit (CFU). The liver and spleen displayed hepatosplenomegaly and inflammatory cell infiltration. Furthermore, second competitive transplantation revealed dysfunction of the HSPC in Atg7-knockout leukemia mice represented by destructive self-renew ability (CFU) and reconstitution ability including decreased B220, Ter 119 cells, and increased Gr-1 cell percentage. In summary, Mice with universal deletion of Atg7 are more inclined to the occurrence of engrafted human leukemia, which is largely attributed to the deterioration of the function of HSPC in autophagy deficient mice.
Collapse
Affiliation(s)
- Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Ni An
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Li Ji
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Lin Song
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Jingyi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Chenglin Song
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China.
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
18
|
Huang X, Han X, Huang Z, Yu M, Zhang Y, Fan Y, Xu B, Zhou K, Song L, Wang X, Lu C, Xia Y. Maternal pentachlorophenol exposure induces developmental toxicity mediated by autophagy on pregnancy mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:829-836. [PMID: 30597782 DOI: 10.1016/j.ecoenv.2018.11.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Pentachlorophenol (PCP) is often used as chlorinated hydrocarbon herbicides and insecticides, which has been suggested that toxicity of carcinogenic effect, teratogenic effect and reproductive system. However, there was still precious known about the underlying molecular mechanism of PCP on mammalian early development. To explore the developmental toxicity of PCP and its potential mechanism, pregnancy ICR mice except controls were exposed to PCP (0.02, 0.2 or 2 mg/kg) during gestation day (GD) 0.5 to GD8.5 in this study. We found that the fetal loss rate was increased and placental chorionic villi structure was disorder in hematoxylin-eosin staining (HE) on GD16.5. Meanwhile, autophagosomes were observed in chorionic villi through Transmission Electron Microscope (TEM). Moreover, the mRNA and/or protein expression of P62, LC3-ІІ/LC3-І and Beclin1 were increased in placenta, indicating the occurrence of autophagy. Then, to further explore the autophagy mechanism, microRNA (miR)-30a-5p, an expression inhibitor of Beclin1, was predicted through bioinformatics predictions and RT-PCR, and it was reduced in PCP-treated mice. Transfection and luciferase reporter gene test were used to verify the interaction between Beclin1 and miR-30a-5p. These results firstly indicate that, PCP exposure could downregulate the expression of miR-30a-5p, and then induced autophagy through upregulation of Beclin1 to result in fetal loss. Our study laid a foundation for understanding the PCP developmental toxicity through autophagy.
Collapse
Affiliation(s)
- Xiaomin Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
19
|
Dyshlovoy SA, Honecker F. Marine Compounds and Autophagy: Beginning of a New Era. Mar Drugs 2018; 16:md16080260. [PMID: 30065190 PMCID: PMC6117714 DOI: 10.3390/md16080260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russian.
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- School of Natural Sciences, Far Eastern Federal University, 690022 Vladivostok, Russian.
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Tumor and Breast Center ZeTuP St. Gallen, CH-9006 St. Gallen, Switzerland.
| |
Collapse
|
20
|
mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Biosci Rep 2018; 38:BSR20171669. [PMID: 29563162 PMCID: PMC5968188 DOI: 10.1042/bsr20171669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Unc-51 Like Kinase 1 (ULK1) is a critical regulator of the biogenesis of autophagosomes, the central component of the catabolic macroautophagy pathway. Regulation of ULK1 activity is dependent upon several phosphorylation events acting to repress or activate the enzymatic function of this protein. Phosphorylation of Ser758 ULK1 has been linked to repression of autophagosome biogenesis and was thought to be exclusively dependent upon mTOR complex 1 kinase activity. In the present study, a novel regulation of Ser758 ULK1 phosphorylation is reported following prolonged inhibition of the Parkinson’s disease linked protein leucine rich repeat kinase 2 (LRRK2). Here, modulation of Ser758 ULK1 phosphorylation following LRRK2 inhibition is decoupled from the repression of autophagosome biogenesis and independent of mTOR complex 1 activity.
Collapse
|
21
|
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J, Li L. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 2018; 52:1057-1070. [PMID: 29436618 DOI: 10.3892/ijo.2018.4270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy is a key catabolic process, in which cytosolic cargo is engulfed by the formation of a double membrane and then degraded through the fusing of autophagosomes with lysosomes. Autophagy is a constitutively active, evolutionarily conserved, catabolic process important for the maintenance of homeostasis in cellular stress responses and cell survival. Although the mechanisms of autophagy have not yet been fully elucidated, emerging evidence suggests that it plays a dual role in breast cancer and in maintaining the activity of breast cancer stem cells (CSCs). However, it may play a complex role in breast CSC therapy. Breast CSCs, a population of cells with the ability to self-renew, differentiate, and initiate and sustain tumor growth, play an essential role in cancer recurrence, anticancer resistance and metastasis. In addition, the elucidation of the association between autophagy and apoptosis in the tumor context is crucial in order to better address appropriate therapy strategies. In the present review, a summary of the mechanisms and roles of autophagy in breast cancer and CSCs is presented. The potential value of such autophagy modulators in the development of novel breast cancer therapies is discussed.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Tao Qin
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jinfeng Yang
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Yan Sun
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| |
Collapse
|
22
|
Tian S, Guo X, Yu C, Sun C, Jiang J. miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1. Oncotarget 2017; 8:11071-11082. [PMID: 28052003 PMCID: PMC5355247 DOI: 10.18632/oncotarget.14360] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
The role of microRNA in the aberrant autophagy that occurs in pancreatic cancer remains controversial. Because hypoxia is known to induce autophagy, we screened for differentially expressed microRNAs using a miRNA microarray with pancreatic cancer cells cultured under normoxic and hypoxic conditions. We found that miR-138-5p was among the most downregulated miRNA in hypoxia-stimulated cells, and that overexpression of miR-138-5p substantially reduced expression of autophagy markers. In addition, western blot and immunofluorescence analyses and electron microscopy revealed that miR-138-5p inhibited autophagy in pancreatic cancer cells and blocked serum starvation-induced autophagic flux independently of the typical autophagic signaling pathway. miR-138-5p had no effect on ATG3, ATG5, or ATG7, three primary autophagy-associated genes. Instead, miR-138-5p specifically targeted the SIRT1 3' untranslated region and suppressed autophagy by reducing the level of SIRT1, which acetylates FoxO1 and regulates autophagy via FoxO1/Rab7. SIRT1 or Rab7 knockdown blocked the SIRT1/FoxO1/Rab7 axis and suppressed autophagic inhibition by miR-138-5p. Finally, we found that miR-138-5p inhibited autophagy and tumor growth in vivo. These results indicate that miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1.
Collapse
Affiliation(s)
- She Tian
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Yu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| |
Collapse
|
23
|
MITA modulated autophagy flux promotes cell death in breast cancer cells. Cell Signal 2017; 35:73-83. [DOI: 10.1016/j.cellsig.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/12/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
|
24
|
Ouyang ZH, Wang WJ, Yan YG, Wang B, Lv GH. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget 2017; 8:57870-57881. [PMID: 28915718 PMCID: PMC5593690 DOI: 10.18632/oncotarget.18628] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the primary cause of low back pain, a severe public health problem worldwide. Current therapy for IDD aims to alleviate the symptoms and does not target the underlying pathological alternations within the disc. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway protects against IDD, which is attributed to increase of ECM content, prevention of cell apoptosis, facilitation of cell proliferation, induction or prevention of cell autophagy, alleviation of oxidative damage, and adaptation of hypoxic microenvironment. In the current review, we summarize recent progression on activation and negative regulation of the PI3K/Akt signaling pathway, and highlight its impact on IDD. Targeting this pathway could become an attractive therapeutic strategy for IDD in the near future.
Collapse
Affiliation(s)
- Zhi-Hua Ouyang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China.,Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bing Wang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Autophagy as a potential target for sarcoma treatment. Biochim Biophys Acta Rev Cancer 2017; 1868:40-50. [PMID: 28242349 DOI: 10.1016/j.bbcan.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment.
Collapse
|