1
|
Fasolino I, Carvalho ED, Raucci MG, Bonadies I, Soriente A, Pezzella A, Pêgo AP, Ambrosio L. Eumelanin decorated poly(lactic acid) electrospun substrates as a new strategy for spinal cord injury treatment. BIOMATERIALS ADVANCES 2023; 146:213312. [PMID: 36736264 DOI: 10.1016/j.bioadv.2023.213312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Spinal cord injury (SCI) is characterized by neuroinflammatory processes that are marked by an uncontrolled activation of microglia, which directly damages neurons. Natural and synthetic melanins represent an effective tool to treat neuroinflammation because they possess immunomodulatory properties. Here, the main objective was to evaluate the effect of eumelanin-coated poly(lactic acid) (EU@PLA) aligned microfibers on in vitro model of neuroinflammation related to spinal cord injury in terms of inflammatory mediators' modulation. Aligned fibers were chosen to provide physical cues to guide axonal growth in a specific direction thus restoring the synaptic connection. Eumelanin decorated PLA electrospun substrates were produced combining electrospinning, spin coating and solid-state polymerization processes (oxidative coupling under oxygen atmosphere). Biological response in terms of antioxidant and anti-inflammatory activity was analyzed on an in vitro model of neuroinflammation [microglial cells stimulated with lipopolysaccharide (LPS)]. Cell morphology and EU@PLA mechanism of action, in terms of toll-like receptor-4 (TLR-4) involvement were assessed. The results show that EU@PLA fibers were able to decrease reactive oxygen species, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) expression >50 % compared to PLA + LPS and interleukin 6 (IL-6) secretion about 20 %. Finally, the mechanism of action of EU@PLA in microglia was found to be dependent on the TLR-4 signaling. Protein expression analysis revealed a decreased in TLR-4 production induced by LPS stimulation in presence of EU@PLA. Overall, our results show that EU@PLA represents an innovative and effective strategy for the control of inflammatory response in central nervous system.
Collapse
Affiliation(s)
- Ines Fasolino
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy.
| | - Eva Daniela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy; Bioelectronics Task Force at University of Naples "Federico II", Italy.
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy; University of Naples "Federico II" Department of Physics "Ettore Pancini" Complesso Universitario Monte S. Angelo, Italy; Bioelectronics Task Force at University of Naples "Federico II", Italy
| | - Ana Paula Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
2
|
D'Errico S, Falanga AP, Greco F, Piccialli G, Oliviero G, Borbone N. State of art in the chemistry of nucleoside-based Pt(II) complexes. Bioorg Chem 2023; 131:106325. [PMID: 36577221 DOI: 10.1016/j.bioorg.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After the fortuitous discovery of the anticancer properties of cisplatin, many Pt(II) complexes have been synthesized, to obtain less toxic leads which could overcome the resistance phenomena. Given the importance of nucleosides and nucleotides as antimetabolites, studying their coordinating properties towards Pt(II) ions is challenging for bioorganic and medicinal chemistry. This review aims to describe the results achieved so far in the aforementioned field, paying particular attention to the synthetic aspects, the chemical-physical characterization, and the biological activities of the nucleoside-based Pt(II) complexes.
Collapse
Affiliation(s)
- Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
3
|
Greco F, Falanga AP, Terracciano M, D’Ambrosio C, Piccialli G, Oliviero G, Roviello GN, Borbone N. CD, UV, and In Silico Insights on the Effect of 1,3-Bis(1'-uracilyl)-2-propanone on Serum Albumin Structure. Biomolecules 2022; 12:1071. [PMID: 36008965 PMCID: PMC9405946 DOI: 10.3390/biom12081071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
1,3-diaryl-2-propanone derivatives are synthetic compounds used as building blocks for the realization not only of antimicrobial drugs but also of new nanomaterials thanks to their ability to self-assemble in solution and interact with nucleopeptides. However, their ability to interact with proteins is a scarcely investigated theme considering the therapeutic importance that 1,3-diaryl-2-propanones could have in the modulation of protein-driven processes. Within this scope, we investigated the protein binding ability of 1,3-bis(1'-uracilyl)-2-propanone, which was previously synthesized in our laboratory utilizing a Dakin-West reaction and herein indicated as U2O, using bovine serum albumin (BSA) as the model protein. Through circular dichroism (CD) and UV spectroscopy, we demonstrated that the compound, but not the similar thymine derivative T2O, was able to alter the secondary structure of the serum albumin leading to significant consequences in terms of BSA structure with respect to the unbound protein (Δβ-turn + Δβ-sheet = +23.6%, Δα = -16.7%) as revealed in our CD binding studies. Moreover, molecular docking studies suggested that U2O is preferentially housed in the domain IIIB of the protein, and its affinity for the albumin is higher than that of the reference ligand HA 14-1 (HDOCK score (top 1-3 poses): -157.11 ± 1.38 (U2O); -129.80 ± 6.92 (HA 14-1); binding energy: -7.6 kcal/mol (U2O); -5.9 kcal/mol (HA 14-1)) and T2O (HDOCK score (top 1-3 poses): -149.93 ± 2.35; binding energy: -7.0 kcal/mol). Overall, the above findings suggest the ability of 1,3-bis(1'-uracilyl)-2-propanone to bind serum albumins and the observed reduction of the α-helix structure with the concomitant increase in the β-structure are consistent with a partial protein destabilization due to the interaction with U2O.
Collapse
Affiliation(s)
- Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
- Institute of Applied Sciences and Intelligent Systems “Eduardo Caianiello”, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Carlotta D’Ambrosio
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy;
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (F.G.); (A.P.F.); (M.T.); (C.D.); (G.P.); (N.B.)
- Institute of Applied Sciences and Intelligent Systems “Eduardo Caianiello”, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy;
| |
Collapse
|
4
|
O6-[(2″,3″-O-Isopropylidene-5″-O-tbutyldimethylsilyl)pentyl]-5′-O-tbutyldiphenylsilyl-2′,3′-O-isopropylideneinosine. MOLBANK 2022. [DOI: 10.3390/m1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a cyclic nucleotide involved in the Ca2+ homeostasis. In its structure, the northern ribose, bonded to adenosine through an N1 glycosidic bond, is connected to the southern ribose through a pyrophosphate bridge. Due to the chemical instability at the N1 glycosidic bond, new bioactive cADPR derivatives have been synthesized. One of the most interesting analogues is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine replaced adenosine. The efforts for synthesizing new linear and cyclic northern ribose modified cIDPR analogues led us to study in detail the inosine N1 alkylation reaction. In the last few years, we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. With the aim to obtain the closest flexible cIDPR analogue, we have attached to the inosine N1 position a 2″,3″-dihydroxypentyl chain, possessing the two OH groups in a ribose-like fashion. The inosine alkylation reaction afforded also the O6-alkylated regioisomer, which could be a useful intermediate for the construction of new kinds of cADPR mimics.
Collapse
|
5
|
Petrozziello T, Boscia F, Tedeschi V, Pannaccione A, de Rosa V, Corvino A, Severino B, Annunziato L, Secondo A. Na +/Ca 2+ exchanger isoform 1 takes part to the Ca 2+-related prosurvival pathway of SOD1 in primary motor neurons exposed to beta-methylamino-L-alanine. Cell Commun Signal 2022; 20:8. [PMID: 35022040 PMCID: PMC8756626 DOI: 10.1186/s12964-021-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background The cycad neurotoxin beta-methylamino-l-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. Methods By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. Results We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. Conclusion Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00813-z.
Collapse
Affiliation(s)
- Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, "Federico II" University of Naples, Via D. Montesano 49, 80131, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, "Federico II" University of Naples, Via D. Montesano 49, 80131, Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
6
|
D'Errico S, Greco F, Patrizia Falanga A, Tedeschi V, Piccialli I, Marzano M, Terracciano M, Secondo A, Roviello GN, Oliviero G, Borbone N. Probing the Ca 2+ mobilizing properties on primary cortical neurons of a new stable cADPR mimic. Bioorg Chem 2021; 117:105401. [PMID: 34662754 DOI: 10.1016/j.bioorg.2021.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a second messenger involved in the Ca2+ homeostasis. Its chemical instability prompted researchers to tune point by point its structure, obtaining stable analogues featuring interesting biological properties. One of the most challenging derivatives is the cyclic inosine diphosphate ribose (cIDPR), in which the hypoxanthine isosterically replaces the adenine. As our research focuses on the synthesis of N1 substituted inosines, in the last few years we have produced new flexible cIDPR analogues, where the northern ribose has been replaced by alkyl chains. Interestingly, some of them mobilized Ca2+ ions in PC12 cells. To extend our SAR studies, herein we report on the synthesis of a new stable cIDPR derivative which contains the 2″S,3″R dihydroxypentyl chain instead of the northern ribose. Interestingly, the new cyclic derivative and its open precursor induced an increase in intracellular calcium concentration ([Ca2+]i) with the same efficacy of the endogenous cADPR in rat primary cortical neurons.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Francesca Greco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Valentina Tedeschi
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Ilaria Piccialli
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | - Maria Marzano
- Istituto di Cristallografia (IC) CNR, Via Amendola 122/O-70126, Bari, Italy
| | - Monica Terracciano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| | - Agnese Secondo
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Divisione di Farmacologia, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5-80131 Napoli, Italy
| | | | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, via Sergio Pansini, 5-80131 Napoli, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano, 49-80131 Napoli, Italy
| |
Collapse
|
7
|
D'Errico S, Basso E, Falanga AP, Marzano M, Pozzan T, Piccialli V, Piccialli G, Oliviero G, Borbone N. New Linear Precursors of cIDPR Derivatives as Stable Analogs of cADPR: A Potent Second Messenger with Ca 2+-Modulating Activity Isolated from Sea Urchin Eggs. Mar Drugs 2019; 17:E476. [PMID: 31426471 PMCID: PMC6723567 DOI: 10.3390/md17080476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Herein, we report on the synthesis of a small set of linear precursors of an inosine analogue of cyclic ADP-ribose (cADPR), a second messenger involved in Ca2+ mobilization from ryanodine receptor stores firstly isolated from sea urchin eggs extracts. The synthesized compounds were obtained starting from inosine and are characterized by an N1-alkyl chain replacing the "northern" ribose and a phosphate group attached at the end of the N1-alkyl chain and/or 5'-sugar positions. Preliminary Ca2+ mobilization assays, performed on differentiated C2C12 cells, are reported as well.
Collapse
Affiliation(s)
- Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
- ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, Milano 20126, Italy
| | - Emy Basso
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biomediche, Istituto di Neuroscienze (Sezione di Padova), viale Giuseppe Colombo 3, Padova 35131, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Padova, via Ugo Bassi 58/b, Padova 35131, Italy
| | - Andrea Patrizia Falanga
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, Napoli 80131, Italy
| | - Maria Marzano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
| | - Tullio Pozzan
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biomediche, Istituto di Neuroscienze (Sezione di Padova), viale Giuseppe Colombo 3, Padova 35131, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Padova, via Ugo Bassi 58/b, Padova 35131, Italy
- Istituto Veneto di Medicina Molecolare, via Orus 2, Padova 35129, Italy
| | - Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, via Cintia, 26, Napoli 80126, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
- ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, Milano 20126, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, Napoli 80131, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, Napoli 80131, Italy
- ISBE Italy/SYSBIO Centro di System Biology, Università di Milano-Bicocca, piazza delle Scienze 2, Milano 20126, Italy
| |
Collapse
|
8
|
Watt JM, Thomas MP, Potter BVL. Synthetic cADPR analogues may form only one of two possible conformational diastereoisomers. Sci Rep 2018; 8:15268. [PMID: 30323284 PMCID: PMC6189198 DOI: 10.1038/s41598-018-33484-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022] Open
Abstract
Cyclic adenosine 5′-diphosphate ribose (cADPR) is an emerging Ca2+-mobilising second messenger. cADPR analogues have been generated as chemical biology tools via both chemo-enzymatic and total synthetic routes. Both routes rely on the cyclisation of a linear precursor to close an 18-membered macrocyclic ring. We show here that, after cyclisation, there are two possible macrocyclic product conformers that may be formed, depending on whether cyclisation occurs to the “right” or the “left” of the adenine base (as viewed along the H-8 → C-8 base axis). Molecular modelling demonstrates that these two conformers are distinct and cannot interconvert. The two conformers would present a different spatial layout of binding partners to the cADPR receptor/binding site. For chemo-enzymatically generated analogues Aplysia californica ADP-ribosyl cyclase acts as a template to generate solely the “right-handed” conformer and this corresponds to that of the natural messenger, as originally explored using crystallography. However, for a total synthetic analogue it is theoretically possible to generate either product, or a mixture, from a given linear precursor. Cyclisation on either face of the adenine base is broadly illustrated by the first chemical synthesis of the two enantiomers of a “southern” ribose-simplified cIDPR analogue 8-Br-N9-butyl-cIDPR, a cADPR analogue containing only one chiral sugar in the “northern” ribose, i.e. 8-Br-D- and its mirror image 8-Br-L-N9-butyl-cIDPR. By replacing the D-ribose with the unnatural L-ribose sugar, cyclisation of the linear precursor with pyrophosphate closure generates a cyclised product spectroscopically identical, but displaying equal and opposite specific rotation. These findings have implications for cADPR analogue design, synthesis and activity.
Collapse
Affiliation(s)
- Joanna M Watt
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
9
|
Wang X, Zhang X, Zhang K, Hu J, Liu Z, Jin H, Zhang L, Zhang L. Calcium-Mobilizing Behaviors of Neutral Cyclic ADP-Ribose Mimics that Integrate Modifications to the Nucleobase, Northern Ribose and Pyrophosphate. Chembiochem 2018; 19:1444-1451. [PMID: 29633462 DOI: 10.1002/cbic.201800133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/11/2022]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizer involved in diverse cellular processes. Mimics of cADPR play a crucial role in investigating the molecular mechanism(s) of cADPR-mediated signaling. Here, compound 3, a mimic of cADPR in which a neutral triazole moiety and an ether linkage were introduced to substitute the pyrophosphate and "northern" ribose components, respectively, was synthesized for the first time. The pharmacological activities in Jurkat cells indicated that this mimic is capable of penetrating plasma membrane and inciting Ca2+ release from the endoplasmic reticulum (ER) through the action of ryanodine receptors (RyRs) and triggering Ca2+ influx. Furthermore, a uridine moiety was introduced in place of adenine and the new cADPR mimics 4 and 5 were synthesized. The results of biological investigation showed that these mimics also targeted RyRs and retained moderate Ca2+ agonistic activities. The results indicated that the neutral cADPR mimics had the same targets for inducing Ca2+ signaling.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoyan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianxing Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|