1
|
Xie W, Li Y, Wang X, Blokhina E, Krupitsky E, Vetrova M, Hu J, Yuan T, Chen J, Wang H, Chen X. GABA B Receptor: Structure, Biological Functions, and Therapy for Diseases. MedComm (Beijing) 2025; 6:e70163. [PMID: 40242161 PMCID: PMC12000685 DOI: 10.1002/mco2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) B receptors (GABABRs) that acts slowly and maintains the inhibitory tone are versatile regulators in the complex nervous behaviors and their involvement in various neuropsychiatric disorders, such as anxiety, epilepsy, pain, drug addiction, and Alzheimer's disease. Additional study advances have implied the crucial roles of GABABRs in regulating feeding-related behaviors, yet their therapeutic potential in addressing the neuropsychiatric disorders, binge eating, and feeding-related disorders remains underutilized. This general review summarized the physiological structure and functions of GABABR, explored the regulation in various psychiatric disorders, feeding behaviors, binge eating, and metabolism disorders, and fully discussed the potential of targeting GABABRs and its regulator-binding sites for the treatment of different psychiatric disorders, binge eating and even obesity. While agonists that directly bind to GABABR1 have some negative side effects, positive allosteric modulators (PAMs) that bind to GABABR2 demonstrate excellent therapeutic efficacy and tolerability and have better safety and therapeutic indexes. Moreover, phosphorylation sites of downstream GABABRs regulators may be novel therapeutic targets for psychiatric disorders, binge eating, and obesity. Further studies, clinical trials in particular, will be essential for confirming the therapeutic value of PAMs and other agents targeting the GABABR pathways in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health CenterTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyue Wang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Elena Blokhina
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Evgeny Krupitsky
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
- Bekhterev National Medical Research Center for Psychiatry and NeurologySt. PetersburgRussia
| | - Marina Vetrova
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Ji Hu
- ShanghaiTech UniversityShanghaiChina
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Jue Chen
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Hua Wang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiangfang Chen
- Department of EndocrinologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
2
|
A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABA BR-Coupled N-Type Calcium Channel. Mar Drugs 2022; 20:md20120750. [PMID: 36547897 PMCID: PMC9781320 DOI: 10.3390/md20120750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
α-conotoxin AuIB is the only one of the 4/6 type α-conotoxins (α-CTxs) that inhibits the γ-aminobutyric acid receptor B (GABABR)-coupled N-type calcium channel (CaV2.2). To improve its inhibitory activity, a series of variants were synthesized and evaluated according to the structure-activity relationships of 4/7 type α-CTxs targeting GABABR-coupled CaV2.2. Surprisingly, only the substitution of Pro7 with Arg results in a 2-3-fold increase in the inhibition of GABABR-coupled CaV2.2 (IC50 is 0.74 nM); substitutions of position 9-12 with basic or hydrophobic amino acid and the addition of hydrophobic amino acid Leu or Ile at the second loop to mimic 4/7 type α-CTxs all failed to improve the inhibitory activity of AuIB against GABABR-coupled CaV2.2. Interestingly, the most potent form of AuIB[P7R] has disulfide bridges of "1-4, 2-3" (ribbon), which differs from the "1-3, 2-4" (globular) in the isoforms of wildtype AuIB. In addition, AuIB[P7R](globular) displays potent analgesic activity in the acetic acid writhing model and the partial sciatic nerve injury (PNL) model. Our study demonstrated that 4/6 type α-CTxs, with the disulfide bridge connectivity "1-4, 2-3," are also potent inhibitors for GABABR-coupled CaV2.2, exhibiting potent analgesic activity.
Collapse
|
3
|
Huang Q, Chu X, Zhang H, Yu S, Zhang L, Zhang X, Yu R, Guo C, Dai Q. Discovery and Structural and Functional Characterization of a Novel A-Superfamily Conotoxin Targeting α9α10 Nicotinic Acetylcholine Receptor. ACS Chem Biol 2022; 17:2483-2494. [PMID: 36048451 DOI: 10.1021/acschembio.2c00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels widely distributed in the central peripheral nervous system and muscles which participate in rapid synaptic transmission. The α9α10 nAChR is an acetylcholine receptor subtype and is involved in chronic pain. In the present study, a new A-superfamily conotoxin Bt14.12 cloned from Conus betulinus was found to selectively inhibit α9α10 nAChRs with an IC50 of 62.3 nM. Unlike α-conotoxins and other A-superfamily conotoxins, Bt14.12 contains a four Cys (C-C-C-C) framework with a unique disulfide bond connection "C1-C4, C2-C3". The structure-activity studies of Bt14.12 demonstrate that all amino acid residues contribute to its potency. Interestingly, mutation experiments show that the deletion of Asp2 or the addition of three Arg residues at the N-terminus of Bt14.12 significantly enhances its inhibitory activity (IC50 is 21.9 nM or 12.7 nM, respectively) by 2- or 4-fold compared to the wild-type Bt14.12. The NMR structure of Bt14.12 shows that it contains α-helix- and β-turn-like elements, and further computational modelings of the interaction between Bt14.12 and the α9α10 nAChR demonstrate that Bt14.12 possesses a distinctive mode of action and displays a different structure-activity relationship from known α9α10 nAChR targeting α-conotoxins. Our findings provide a novel conotoxin that potently targets α9α10 nAChRs and a new motif for designing potent inhibitors against α9α10 nAChRs.
Collapse
Affiliation(s)
- Qiuyuan Huang
- Beijing Institute of Biotechnology, Beijing 100071, China.,Life Sciences Institute of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xin Chu
- Beijing Institute of Biotechnology, Beijing 100071, China.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Haoran Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Longxiao Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuerong Zhang
- Life Sciences Institute of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
4
|
Preparation and Functional Identification of a Novel Conotoxin QcMNCL-XIII0.1 from Conus quercinus. Toxins (Basel) 2022; 14:toxins14020099. [PMID: 35202127 PMCID: PMC8877388 DOI: 10.3390/toxins14020099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Conotoxins are tools used by marine Conus snails to hunt and are a significant repository for marine drug research. Conotoxins highly selectively coordinate different subtypes of various ion channels, and a few have been used in pain management. Although more than 8000 conotoxin genes have been found, the biological activity and function of most have not yet been examined. In this report, we selected the toxin gene QcMNCL-XIII0.1 from our previous investigation and studied it in vitro. First, we successfully prepared active recombinant QcMNCL-XIII0.1 using a TrxA (Thioredoxin A)-assisted folding expression vector based on genetic engineering technology. Animal experiments showed that the recombinant QcMNCL-XIII0.1 exhibited nerve conduction inhibition similar to that of pethidine hydrochloride. With flow cytometry combined fluorescent probe Fluo-4 AM, we found that 10 ng/μL recombinant QcMNCL-XIII0.1 inhibited the fluorescence intensity by 31.07% in the 293T cell model transfected with Cav3.1, implying an interaction between α1G T-type calcium channel protein and recombinant QcMNCL-XIII0.1. This toxin could be an important drug in biomedical research and medicine for pain control.
Collapse
|
5
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
6
|
Zhang M, Yu S, Zhang X, Huang Q, Huang Y, Luo M, Wei Y, Chen W, Chen Z, Zhou X, Dai Q. A new protein-coupled antigen of α-conotoxin MI displays high immunogenicity and can produce antiserum with high detoxification activity. Toxicon 2022; 208:53-61. [DOI: 10.1016/j.toxicon.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
|
7
|
Ma X, Huang Q, Yu S, Xu S, Huang Y, Zhao Z, Xiao X, Dai Q. The 3/4- and 3/6-Subfamily Variants of α-Conotoxins GI and MI Exhibit Potent Inhibitory Activity against Muscular Nicotinic Acetylcholine Receptors. Mar Drugs 2021; 19:md19120705. [PMID: 34940704 PMCID: PMC8704989 DOI: 10.3390/md19120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
α-Conotoxins GI and MI belong to the 3/5 subfamily of α-conotoxins and potently inhibit muscular nicotinic acetylcholine receptors (nAChRs). To date, no 3/4- or 3/6-subfamily α-conotoxins have been reported to inhibit muscular nAChRs. In the present study, a series of new 3/4-, 3/6-, and 3/7-subfamily GI and MI variants were synthesized and functionally characterized by modifications of loop2. The results show that the 3/4-subfamily GI variant GI[∆8G]-II and the 3/6-subfamily variants GI[+13A], GI[+13R], and GI[+13K] displayed potent inhibition of muscular nAChRs expressed in Xenopus oocytes, with an IC50 of 45.4–73.4 nM, similar to or slightly lower than that of wild-type GI (42.0 nM). The toxicity of these GI variants in mice appeared to be about a half to a quarter of that of wild-type GI. At the same time, the 3/7-subfamily GI variants showed significantly lower in vitro potency and toxicity. On the other hand, similar to the 3/6-subfamily GI variants, the 3/6-subfamily MI variants MI[+14R] and MI[+14K] were also active after the addition of a basic amino acid, Arg or Lys, in loop2, but the activity was not maintained for the 3/4-subfamily MI variant MI[∆9G]. Interestingly, the disulfide bond connectivity “C1–C4, C2–C3” in the 3/4-subfamily variant GI[∆8G]-II was significantly more potent than the “C1–C3, C2–C4” connectivity found in wild-type GI and MI, suggesting that disulfide bond connectivity is easily affected in the rigid 3/4-subfamily α-conotoxins and that the disulfide bonds significantly impact the variants’ function. This work is the first to demonstrate that 3/4- and 3/6-subfamily α-conotoxins potently inhibit muscular nAChRs, expanding our knowledge of α-conotoxins and providing new motifs for their further modifications.
Collapse
Affiliation(s)
- Xiaoli Ma
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
- Institute of Chemistry and Chemical Engineering, University of South China, Henyang 421000, China
| | - Qiuyuan Huang
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
| | - Shujing Xu
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
| | - Yue Huang
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
| | - Zhiming Zhao
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
| | - Xinrong Xiao
- Institute of Chemistry and Chemical Engineering, University of South China, Henyang 421000, China
- Correspondence: (X.X.); (Q.D.); Tel.: +86-10-6694-8897 (Q.D.)
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China; (X.M.); (Q.H.); (S.Y.); (S.X.); (Y.H.); (Z.Z.)
- Correspondence: (X.X.); (Q.D.); Tel.: +86-10-6694-8897 (Q.D.)
| |
Collapse
|
8
|
Guo M, Yu J, Zhu X, Zhangsun D, Luo S. Characterization of an α 4/7-Conotoxin LvIF from Conus lividus That Selectively Blocks α3β2 Nicotinic Acetylcholine Receptor. Mar Drugs 2021; 19:md19070398. [PMID: 34356823 PMCID: PMC8306566 DOI: 10.3390/md19070398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Nicotinic acetylcholine receptor (nAChR), a member of pentameric ligand-gated ion channel transmembrane protein composed of five subunits, is widely distributed in the central and peripheral nervous system. The nAChRs are associated with various neurological diseases, including schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and neuralgia. Receptors containing the α3 subunit are associated with analgesia, generating our interest in their role in pharmacological studies. In this study, α-conotoxin (α-CTx) LvIF was identified as a 16 amino acid peptide using a genomic DNA clone of Conus lividus (C. lividus). The mature LvIF with natural structure was synthesized by a two-step oxidation method. The blocking potency of α-CTx lvIF on nAChR was detected by a two-electrode voltage clamp. Our results showed that α-CTx LvIF was highly potent against rα3β2 and rα6/α3β2β3 nAChR subtypes, The half-maximal inhibitory concentration (IC50) values of α-CTx LvIF against rα3β2 and rα6/α3β2β3 nAChRs expressed in Xenopus oocytes were 8.9 nM and 14.4 nM, respectively. Furthermore, α-CTx LvIF exhibited no obvious inhibition on other nAChR subtypes. Meanwhile, we also conducted a competitive binding experiment between α-CTxs MII and LvIF, which showed that α-CTxs LvIF and MII bind with rα3β2 nAChR at the partial overlapping domain. These results indicate that the α-CTx LvIF has high potential as a new candidate tool for the studying of rα3β2 nAChR related neurophysiology and pharmacology.
Collapse
Affiliation(s)
- Man Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
- Correspondence: (D.Z.); (S.L.)
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
- Medical School, Guangxi University, Nanning 530004, China; (J.Y.); (X.Z.)
- Correspondence: (D.Z.); (S.L.)
| |
Collapse
|
9
|
Bekbossynova A, Zharylgap A, Filchakova O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113373. [PMID: 34204855 PMCID: PMC8199771 DOI: 10.3390/molecules26113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine was the first neurotransmitter described. The receptors targeted by acetylcholine are found within organisms spanning different phyla and position themselves as very attractive targets for predation, as well as for defense. Venoms of snakes within the Elapidae family, as well as those of marine snails within the Conus genus, are particularly rich in proteins and peptides that target nicotinic acetylcholine receptors (nAChRs). Such compounds are invaluable tools for research seeking to understand the structure and function of the cholinergic system. Proteins and peptides of venomous origin targeting nAChR demonstrate high affinity and good selectivity. This review aims at providing an overview of the toxins targeting nAChRs found within venoms of different animals, as well as their activities and the structural determinants important for receptor binding.
Collapse
|
10
|
Ning H, Huang B, Tae HS, Liu Z, Yu S, Li L, Zhang L, Adams DJ, Guo C, Dai Q. α-Conotoxin Bt1.8 from Conus betulinus selectively inhibits α6/α3β2β3 and α3β2 nicotinic acetylcholine receptor subtypes. J Neurochem 2021; 159:90-100. [PMID: 34008858 DOI: 10.1111/jnc.15434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022]
Abstract
α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3β2β3 and rα3β2 nAChRs with an IC50 of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3β2β3 and hα3β2 nAChRs. Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3β2β3 subtype compared to rα3β2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3β2β3 and α3β2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition at α6/α3β2β3 nAChRs.
Collapse
Affiliation(s)
- Huying Ning
- Beijing Institute of Biotechnology, Beijing, China
| | - Biling Huang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Liang Li
- Beijing Institute of Biotechnology, Beijing, China
| | | | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
11
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
12
|
A Conantokin Peptide Con-T[M8Q] Inhibits Morphine Dependence with High Potency and Low Side Effects. Mar Drugs 2021; 19:md19010044. [PMID: 33478061 PMCID: PMC7835912 DOI: 10.3390/md19010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been found to be effective to inhibit morphine dependence. However, the discovery of the selective antagonist for NMDAR GluN2B with low side-effects still remains challenging. In the present study, we report a selective NMDAR GluN2B antagonist con-T[M8Q](a conantokin-T variant) that potently inhibits the naloxone-induced jumping and conditioned place preference of morphine-dependent mice at nmol/kg level, 100-fold higher than ifenprodil, a classical NMDAR NR2B antagonist. Con-T[M8Q] displays no significant impacts on coordinated locomotion function, spontaneous locomotor activity, and spatial memory mice motor function at the dose used. Further molecular mechanism experiments demonstrate that con-T[M8Q] effectively inhibited the transcription and expression levels of signaling molecules related to NMDAR NR2B subunit in hippocampus, including NR2B, p-NR2B, CaMKII-α, CaMKII-β, CaMKIV, pERK, and c-fos. The high efficacy and low side effects of con-T[M8Q] make it a good lead compound for the treatment of opiate dependence and for the reduction of morphine usage.
Collapse
|
13
|
Sun P, Ji Z, Li Z, Pan B. Prevention of scar hyperplasia in the skin by conotoxin: A prospective review. J Cosmet Dermatol 2020; 20:1885-1888. [PMID: 33025725 DOI: 10.1111/jocd.13761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
Scars are often considered to be skin problems that affect beauty. The tension acting on the edge of the wound is the main factor causing the scar hyperplasia. At present, the clinical use of botulinum toxin A (BTX-A) around the wound to cause transient muscle paralysis reduce the muscle movement around the wound and wound tension to prevent scar hyperplasia during wound healing. But the use of BTX-A to prevent scarring requires the use of a syringe. The syringe can cause trauma and pain when it pricks the skin for BTX-A injection. The conotoxin which is secreted by the poison glands on the inside of the venom tube and capsule of the snail provides a simple and effective way to prevent skin scar hyperplasia. We reviewed the classification of conotoxin, the conotoxin's mechanism of preventing scar hyperplasia, and the research direction of conotoxin in the future and provided reference for promoting the application of conotoxin in preventing skin scar hyperplasia.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhonglei Ji
- Department of Plastic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhengyong Li
- Department of Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
15
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
16
|
Fu Y, Li C, Dong S, Wu Y, Zhangsun D, Luo S. Discovery Methodology of Novel Conotoxins from Conus Species. Mar Drugs 2018; 16:md16110417. [PMID: 30380764 PMCID: PMC6266589 DOI: 10.3390/md16110417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cone snail venoms provide an ideal resource for neuropharmacological tools and drug candidates discovery, which have become a research hotspot in neuroscience and new drug development. More than 1,000,000 natural peptides are produced by cone snails, but less than 0.1% of the estimated conotoxins has been characterized to date. Hence, the discovery of novel conotoxins from the huge conotoxin resources with high-throughput and sensitive methods becomes a crucial key for the conotoxin-based drug development. In this review, we introduce the discovery methodology of new conotoxins from various Conus species. It focuses on obtaining full N- to C-terminal sequences, regardless of disulfide bond connectivity through crude venom purification, conotoxin precusor gene cloning, venom duct transcriptomics, venom proteomics and multi-omic methods. The protocols, advantages, disadvantages, and developments of different approaches during the last decade are summarized and the promising prospects are discussed as well.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Cheng Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| |
Collapse
|