1
|
Bermúdez-Puga S, Mendes B, Ramos-Galarza JP, Oliveira de Souza de Azevedo P, Converti A, Molinari F, Moore SJ, Almeida JR, Pinheiro de Souza Oliveira R. Revolutionizing agroindustry: Towards the industrial application of antimicrobial peptides against pathogens and pests. Biotechnol Adv 2025; 82:108605. [PMID: 40368115 DOI: 10.1016/j.biotechadv.2025.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/09/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Antibiotics are essential chemicals for medicine and agritech. However, all antibiotics are small molecules that pathogens evolve antimicrobial resistance (AMR). Alternatively, antimicrobial peptides (AMPs) offer potential to overcome or evade AMR. AMPs provide broad-spectrum activity, favourable biosafety profiles, and a rapid and efficient mechanism of action with low resistance incidence. These properties have driven innovative applications, positioning AMPs as promising contributors to advancements in various industrial sectors. This review evaluates the multifaceted nature of AMPs and their biotechnological applications in underexplored sectors. In the food industry, the application of AMPs helps to suppress the growth of microorganisms, thereby decreasing foodborne illnesses, minimizing food waste, and prolonging the shelf life of products. In animal husbandry and aquaculture, incorporating AMPs into the diet reduces the load of pathogenic microorganisms and enhances growth performance and survival rates. In agriculture, AMPs provide an alternative to decrease the use of chemical pesticides and antibiotics. We also review current methods for obtaining AMPs, including chemical synthesis, recombinant DNA technology, cell-free protein synthesis, and molecular farming, are also reviewed. Finally, we look to the peptide market to assess its status, progress, and transition from the discovery stage to benefits for society and high-quality products. Overall, our review exemplifies the other side of the coin of AMPs and how these molecules provide similar benefits to conventional antibiotics and pesticides in the agritech sector.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Bruno Mendes
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Jean Pierre Ramos-Galarza
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Pamela Oliveira de Souza de Azevedo
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Ricardo Pinheiro de Souza Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil.
| |
Collapse
|
2
|
Kanaujia KA, Wagh S, Pandey G, Phatale V, Khairnar P, Kolipaka T, Rajinikanth PS, Saraf SA, Srivastava S, Kumar S. Harnessing marine antimicrobial peptides for novel therapeutics: A deep dive into ocean-derived bioactives. Int J Biol Macromol 2025; 307:142158. [PMID: 40107127 DOI: 10.1016/j.ijbiomac.2025.142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Marine antimicrobial peptides (AMPs) are potent bioactive compounds with broad-spectrum activity against bacteria, viruses, and fungi, offering a promising alternative to traditional antibiotics. These small, cationic, and amphiphilic peptides (3-50 amino acids) are key components of marine organisms' immune defenses, adapted to harsh oceanic environments. Discovered in the 1980s, marine AMPs have garnered interest for their unique structures and potential applications in human health. However, despite the ocean's vast biodiversity, they remain underexplored compared to land-based AMPs. This review emphasizes the therapeutic potential of marine AMPs, including their modes of action, structural variety, and applications in drug development, tissue regeneration, and cancer treatment. Moreover, it discusses their antibacterial, antiviral, antifungal, and antiparasitic properties. Additionally, the review addresses strategies to enhance the therapeutic potential of marine AMPs and the challenges associated with their development. By examining the promising future of marine AMPs, this review aims to pave the way for new approaches to combat antimicrobial resistance and develop innovative treatments for various infectious diseases. The potential of marine AMPs as the "medicine bank of the new millennium" remains vast, providing a valuable resource for future drug discovery and sustainable practices across industries.
Collapse
Affiliation(s)
- Kunal Agam Kanaujia
- Institute of Pharmacy, Dr Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224133, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 226002, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shailendra Kumar
- Department of Microbiology, Dr Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224133, India.
| |
Collapse
|
3
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Bermúdez-Puga S, Dias M, Lima Reis I, Freire de Oliveira T, Yokomizo de Almeida SR, Mendes MA, Moore SJ, Almeida JR, Proaño-Bolaños C, Pinheiro de Souza Oliveira R. Microscopic and metabolomics analysis of the anti-Listeria activity of natural and engineered cruzioseptins. Biochimie 2024; 225:168-175. [PMID: 38823620 DOI: 10.1016/j.biochi.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Listeria monocytogenes is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the in vitro anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the in vitro potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 μM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-Listeria bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of L. monocytogenes emergence and dissemination.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, São Paulo, 05508-080, SP, Brazil
| | - Iara Lima Reis
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, São Paulo, 05508-080, SP, Brazil
| | - Simon J Moore
- School of Biological and Behavioural Sciences, Queen Mary University of London, UK
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Ricardo Pinheiro de Souza Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil.
| |
Collapse
|
5
|
Shu Z, Ji Y, Liu F, Jing Y, Jiao C, Li Y, Zhao Y, Wang G, Zhang J. Proteomics Analysis of the Protective Effect of Polydeoxyribonucleotide Extracted from Sea Cucumber ( Apostichopus japonicus) Sperm in a Hydrogen Peroxide-Induced RAW264.7 Cell Injury Model. Mar Drugs 2024; 22:325. [PMID: 39057434 PMCID: PMC11277713 DOI: 10.3390/md22070325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yizhi Ji
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Fang Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yuexin Jing
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Chunna Jiao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yue Li
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China; (Z.S.)
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yunping Zhao
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Gongming Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Jian Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| |
Collapse
|
6
|
Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel) 2023; 12:1694. [PMID: 38136728 PMCID: PMC10740918 DOI: 10.3390/antibiotics12121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is an increasing global problem for public health, and focusing on biofilms has provided further insights into resistance evolution in bacteria. Resistance is innate in many bacterial species, and many antibiotics are derived from natural molecules of soil microorganisms. Is it possible that nature can help control AMR diffusion? In this review, an analysis of resistance mechanisms is summarized, and an excursus of the different approaches to challenging resistance spread based on natural processes is presented as "lessons from Nature". On the "host side", immunotherapy strategies for bacterial infections have a long history before antibiotics, but continuous new inputs through biotechnology advances are enlarging their applications, efficacy, and safety. Antimicrobial peptides and monoclonal antibodies are considered for controlling antibiotic resistance. Understanding the biology of natural predators is providing new, effective, and safe ways to combat resistant bacteria. As natural enemies, bacteriophages were used to treat severe infections before the discovery of antibiotics, marginalized during the antibiotic era, and revitalized upon the diffusion of multi-resistance. Finally, sociopolitical aspects such as education, global action, and climate change are also considered as important tools for tackling antibiotic resistance from the One Health perspective.
Collapse
Affiliation(s)
- Maria Vitale
- Genetics of Microorganisms Laboratory, Molecular Biology Department, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| |
Collapse
|
7
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
8
|
Antibiofilm Potential of Coelomic Fluid and Paste of Earthworm Pheretima posthuma (Clitellata, Megascolecidae) against Pathogenic Bacteria. Microorganisms 2023; 11:microorganisms11020342. [PMID: 36838307 PMCID: PMC9963238 DOI: 10.3390/microorganisms11020342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Antibiotic drug resistance is a global public health issue that demands new and novel therapeutic molecules. To develop new agents, animal secretions or products are used as an alternative agent to overcome this problem. In this study, earthworm (Pheretima posthuma) coelomic fluid (PCF), and body paste (PBP) were used to analyze their effects as antibiofilm agents against four bacterial isolates MH1 (Pseudomonas aeruginosa MT448672), MH2 (Escherichia coli MT448673), MH3 (Staphylococcus aureus MT448675), and MH4 (Klebsiella pneumoniae MT448676). Coelomic fluid extraction and body paste formation were followed by minimum inhibitory concentrations (MICs), biofilm formation time kinetics, and an antibiofilm assay, using heat and cold shock, sunlight exposure auto-digestion, and test tube methods. The results showed that the MIC values of PCF and PBP against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli bacterial isolates ranged from 50 to 100 μg/mL, while, the results related to biofilm formation for P. aeruginosa, S. aureus, and K. pneumoniae strains were observed to be highly significantly increased (p < 0.005) after 72 h. E. coli produced a significant (p < 0.004) amount of biofilm after 48 h. Following time kinetics, the antibiofilm activity of PCF and PBP was tested at different concentrations (i.e., 25-200 μg/mL) against the aforementioned four strains (MH1-MH4). The findings of this study revealed that both PBP (5.61 ± 1.0%) and PCF (5.23 ± 1.5%) at the lowest concentration (25 μg/mL) showed non-significant (p > 0.05) antibiofilm activity against all the selected strains (MH1-MH4). At 50 μg/mL concentration, both PCF and PBP showed significant (p < 0.05) biofilm inhibition (<40%) for all isolates. Further, the biofilm inhibitory potential was also found to be more significant (p < 0.01) at 100 μg/mL of PCF and PBP, while it showed highly significant (p < 0.001) biofilm inhibition at 150 and 200 μg/mL concentrations. Moreover, more than 90% biofilm inhibition was observed at 200 μg/mL of PCF, while in the case of the PBP, <96% biofilm reduction (i.e., 100%) was also observed by all selected strains at 200 μg/mL. In conclusion, earthworm body fluid and paste have biologically active components that inhibit biofilm formation by various pathogenic bacterial strains. For future investigations, there is a need for further study to explore the potential bioactive components and investigate in depth their molecular mechanisms from a pharmaceutical perspective for effective clinical utilization.
Collapse
|
9
|
Man J, Abd El‐Aty AM, Wang Z, Tan M. Recent advances in sea cucumber peptide: Production, bioactive properties, and prospects. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jiacong Man
- School of Mechanical Engineering and Automation Dalian Polytechnic University Dalian Liaoning China
| | - A. M. Abd El‐Aty
- Department of Pharmacology, Faculty of Veterinary Medicine Cairo University Giza Egypt
- Department of Medical Pharmacology, Medical Faculty Ataturk University Erzurum Turkey
| | - Zuzhe Wang
- Dalian Blue Peptide Technology Research & Development Co., Ltd. Liaoning China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| |
Collapse
|
10
|
Punginelli D, Catania V, Vazzana M, Mauro M, Spinello A, Barone G, Barberi G, Fiorica C, Vitale M, Cunsolo V, Saletti R, Di Francesco A, Arizza V, Schillaci D. A Novel Peptide with Antifungal Activity from Red Swamp Crayfish Procambarus clarkii. Antibiotics (Basel) 2022; 11:antibiotics11121792. [PMID: 36551449 PMCID: PMC9774249 DOI: 10.3390/antibiotics11121792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The defense system of freshwater crayfish Procambarus clarkii as a diversified source of bioactive molecules with antimicrobial properties was studied. Antimicrobial activity of two polypeptide-enriched extracts obtained from hemocytes and hemolymph of P. clarkii were assessed against Gram positive (Staphylococcus aureus, Enterococcus faecalis) and Gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria and toward the yeast Candida albicans. The two peptide fractions showed interesting MIC values (ranging from 11 to 700 μg/mL) against all tested pathogens. Polypeptide-enriched extracts were further investigated using a high-resolution mass spectrometry and database search and 14 novel peptides were identified. Some peptides and their derivatives were chemically synthesized and tested in vitro against the bacterial and yeast pathogens. The analysis identified a synthetic derivative peptide, which showed an interesting antifungal (MIC and MFC equal to 31.2 μg/mL and 62.5 μg/mL, respectively) and antibiofilm (BIC50 equal to 23.2 μg/mL) activities against Candida albicans and a low toxicity in human cells.
Collapse
Affiliation(s)
- Diletta Punginelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Valentina Catania
- Department of Earth and Sea Science (DISTEM), University of Palermo, Viale delle Scienze Blg. 16, 90128 Palermo, Italy
- Correspondence:
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Barberi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Calogero Fiorica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Marinuzzi, 3, 90129 Palermo, Italy
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Saletti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonella Di Francesco
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
11
|
Lu Z, Sun N, Dong L, Gao Y, Lin S. Production of Bioactive Peptides from Sea Cucumber and Its Potential Health Benefits: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7607-7625. [PMID: 35715003 DOI: 10.1021/acs.jafc.2c02696] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive peptides from food have been widely studied due to their potential applications as functional foods and pharmaceuticals. Sea cucumber, a traditional tonic food, is characterized by high protein and low fat, thereby substrates are being studied to release sea cucumber peptides (SCPs). Although recent studies have shown that SCPs have various bioactive functions, there is no literature reviewing the development status of SCPs. In this review, we summarized the production of SCPs, including their purification and identification, then mainly focused on the comprehensive potential health benefits of SCP in vivo and in vitro, and finally discussed the challenge facing the development of SCPs. We found that SCPs have well-documented health benefits due to their antioxidation, anti-diabetes, ACE inhibitory, immunomodulatory, anti-cancer, anti-fatigue, anti-aging, neuroprotection, micromineral-chelating, etc. However, the structure-activity relationships of SCPs and the functional molecular mechanisms underlying their regulation in vivo need further investigation. Research on the safety of SCP and its potential regulation mechanism will contribute to transferring these findings into commercial applications. Hopefully, this review could promote the development and application of SCPs in further investigation and commercialization.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuanhong Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
12
|
Wei W, Fan XM, Jia SH, Zhang XP, Zhang Z, Zhang XJ, Zhang JX, Zhang YW. Sea Cucumber Intestinal Peptide Induces the Apoptosis of MCF-7 Cells by Inhibiting PI3K/AKT Pathway. Front Nutr 2021; 8:763692. [PMID: 34970576 PMCID: PMC8713759 DOI: 10.3389/fnut.2021.763692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Sea cucumbers are one of many marine echinoderm animals that contain valuable nutrients and medicinal compounds. The bioactive substances in sea cucumbers make them have promising biological and pharmacological properties, including antioxidant, anti-bacterial, and anti-tumor effects. In this study, sea cucumber intestinal peptide (SCIP) is a small molecular oligopeptide (<1,000 Da) extracted from sea cucumber intestines hydrolyzed by alkaline protease. The analysis of amino acid composition showed that hydrophobic amino acids and branched-chain amino acids were rich in SCIP. Nowadays, although increasing studies have revealed the biological functions of the sea cucumber active substances, there are few studies on the function of SCIP. Furthermore, due to the anti-cancer activity being an essential characteristic of sea cucumber active substances, we also investigated the anti-cancer potential and the underlying mechanism of SCIP in vivo and in vitro. The results indicate that SCIP inhibits the growth of MCF-7 tumor cells in zebrafish and increases the apoptosis of human breast cancer MCF-7 cells. Further mechanism studies confirm that SCIP promotes the expression of apoptosis-related proteins and thus promotes the breast cancer cells (MCF-7) apoptosis via inhibition of PI3K/AKT signal transduction pathway.
Collapse
Affiliation(s)
- Wei Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- Shandong Tianjiu Industry Group, Heze, China
| | - Xiao-Man Fan
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Shao-Hui Jia
- Hubei Key Laboratory of Sport Training and Monitoring, Tianjiu Research and Development Center for Exercise Nutrition and Foods, College of Health Science, Wuhan Sports University, Wuhan, China
| | | | - Zhao Zhang
- Shandong Tianjiu Industry Group, Heze, China
| | | | | | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria due to the improper and overuse of antibiotics and the ineffective performance of antibiotics against the difficult-to-treat biofilm-related infections (BRIs) have urgently called for alternative antimicrobial agents and strategies in combating bacterial infections. Antimicrobial peptides (AMPs), owing to their compelling antimicrobial activity against MDR bacteria and BRIs without causing bacteria resistance, have attracted extensive attention in the research field. With the development of nanomaterial-based drug delivery strategies, AMPs-based nano-formulations have significantly improved the therapeutic effects of AMPs by ameliorating their hydrolytic stability, half-life in vivo, and solubility as well as reducing the cytotoxicity and hemolysis, etc. This review has comprehensively summarized the application AMPs-based nano-formulation in various bacterial infections models, including bloodstream infections (specifically sepsis), pulmonary infections, chronic wound infections, gastrointestinal infections, among others. The design of the nanomaterial-based drug delivery systems and the therapeutic effects of the AMPs-based nano-formulations in literature have been categorized and in details discussed. Overall, this review provides insights into the advantages and disadvantages of the current developed AMPs-based nano-formulations in literature for the treatment of bacterial infections, bringing inspirations and suggestions for their future design in the way towards clinical translation.
Collapse
Affiliation(s)
- Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Mohammadi Movahed M, Hosseini SA, Akbary P, Hajimoradloo A, Hedayati SAA. Antibacterial activity of muscle wall extracts of sea cucumber (Stichopus horrens) from Chabahar coastal area, Iran, against pathogenic bacteria in rainbow trout (Oncorhynchus mykiss). JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1967161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohana Mohammadi Movahed
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Abbas Hosseini
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Paria Akbary
- Faculty of Marine Sciences, Fisheries group, Chabahar Maritime University, Chabahar, Iran
| | - Abdolmajid Hajimoradloo
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Ali Akbar Hedayati
- Faculty of Fisheries and Environment Sciences, Fisheries and Aquatic Ecology group, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
15
|
Tong J, Zhang Z, Wu Q, Huang Z, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Antibacterial peptides from seafood: A promising weapon to combat bacterial hazards in food. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Lima PG, Oliveira JTA, Amaral JL, Freitas CDT, Souza PFN. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci 2021; 278:119647. [PMID: 34043990 DOI: 10.1016/j.lfs.2021.119647] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023]
Abstract
Recently, the dramatic emergence of antimicrobial resistance has received attention from World Health Organization. Synthetic antimicrobial peptides (SAMPs) are considered new weapons to fight against infections caused by multi-drug resistant pathogens. Here, the authors provide an overview of the current research on SAMPs. The focus is SAMPs, how to design them, which features must be considered during design, and comparison with natural peptides. This review also includes a discussion about the natural AMPs, mechanisms of action and applications as new drugs or even as adjuvants molecules to enhance commercial drugs activity. The advances in chemical synthesis have reduced the cost to produce synthetic peptides open ways to achieve new antimicrobial agents. Therefore, synthetic peptides are new promising molecules to safeguard human and animal health.
Collapse
Affiliation(s)
- Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP 60.440-554 Fortaleza, Ceará, Brazil.
| |
Collapse
|
17
|
Antimicrobial Activity of Cyclic-Monomeric and Dimeric Derivatives of the Snail-Derived Peptide Cm-p5 against Viral and Multidrug-Resistant Bacterial Strains. Biomolecules 2021; 11:biom11050745. [PMID: 34067685 PMCID: PMC8156702 DOI: 10.3390/biom11050745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum β-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25–50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.
Collapse
|
18
|
Comparative metabolomic analysis of the body wall from four varieties of the sea cucumber Apostichopus japonicus. Food Chem 2021; 352:129339. [PMID: 33667918 DOI: 10.1016/j.foodchem.2021.129339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 11/23/2022]
Abstract
The sea cucumber, Apostichopus japonicas, is an important economic species with high nutritive value. In recent years, driven by significant market demand, the sea cucumber breeding industry has developed rapidly. Body color and number of papillae are important factors that determine the value and price of sea cucumbers. In this study, metabolite profiling of four sea cucumber varieties (green, white, purple and spiny) was performed using ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-QTOF-MS) combined with multivariate analysis. Orthogonal partial least-squares discriminant analysis (OPLS-DA) clearly discriminated the body wall metabolites of four sea cucumber varieties. Differential metabolites included fatty acids, phospholipids, and sugars. KEGG metabolic pathway analysis revealed that carbohydrate, protein, and phospholipid metabolism were highly conserved among the varieties. These results provide a comprehensive insight into differences in the metabolite profile of four A. japonicus varieties and a deeper understanding of sea cucumber varieties breeding.
Collapse
|
19
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, Diana P. Therapeutic Strategies To Counteract Antibiotic Resistance in MRSA Biofilm-Associated Infections. ChemMedChem 2021; 16:65-80. [PMID: 33090669 DOI: 10.1002/cmdc.202000677] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the leading causes of persistent human infections. This pathogen is widespread and is able to colonize asymptomatically about a third of the population, causing moderate to severe infections. It is currently considered the most common cause of nosocomial infections and one of the main causes of death in hospitalized patients. Due to its high morbidity and mortality rate and its ability to resist most antibiotics on the market, it has been termed a "superbug". Its ability to form biofilms on biotic and abiotic surfaces seems to be the primarily means of MRSA antibiotic resistance and pervasiveness. Importantly, more than 80 % of bacterial infections are biofilm-mediated. Biofilm formation on indwelling catheters, prosthetic devices and implants is recognized as the cause of serious chronic infections in hospital environments. In this review we discuss the most relevant literature of the last five years concerning the development of synthetic small molecules able to inhibit biofilm formation or to eradicate or disperse pre-formed biofilms in the fight against MRSA diseases. The aim is to provide guidelines for the development of new anti-virulence strategies based on the knowledge so far acquired, and, to identify the main flaws of this research field, which have hindered the generation of new market-approved anti-MRSA drugs that are able to act against biofilm-associated infections.
Collapse
Affiliation(s)
- Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology Cancer Center Amsterdam, VU University Medical Center (VUmc), De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
21
|
Metabolomics analysis of sea cucumber (Apostichopus japonicus) in different geographical origins using UPLC–Q-TOF/MS. Food Chem 2020; 333:127453. [DOI: 10.1016/j.foodchem.2020.127453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022]
|
22
|
Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020; 9:E846. [PMID: 32610520 PMCID: PMC7404774 DOI: 10.3390/foods9070846] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, bioactive peptides are natural compounds of food or part of protein that are inactive in the precursor molecule. However, they may be active after hydrolysis and can be transported to the active site. Biologically active peptides can also be synthesized chemically and characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition of enzymes involved in the development of diseases. The scientific literature has described many peptides with bioactive properties obtained from different sources. Information about the structure, origin, and properties of peptides can also be found in many databases. This review will describe peptides inhibiting the development of current diseases, peptides with antimicrobial properties, and new alternative sources of peptides based on the current knowledge and documentation of their bioactivity. All these issues are part of modern research on peptides and their use in current health or technological problems in food production.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Ewelina Zielińska
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Damian Zieliński
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
23
|
Złotek U, Jakubczyk A, Rybczyńska-Tkaczyk K, Ćwiek P, Baraniak B, Lewicki S. Characteristics of New Peptides GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT as Inhibitors of Enzymes Involved in Metabolic Syndrome and Antimicrobial Potential. Molecules 2020; 25:E2492. [PMID: 32471271 PMCID: PMC7321301 DOI: 10.3390/molecules25112492] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the cytotoxic properties, influence on enzyme activity involved in metabolic syndrome, and antimicrobial activity of synthetic peptides with GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT sequences. Peptides have no cytotoxic effect on cells. The highest inhibitory effect on angiotensin converting enzyme I was noted for peptide GT-14 (IC50 = 525.63 µg/mL). None of the tested peptides had an influence on α-glucosidase. The highest α-amylase and lipase inhibitory activity was noted for GG-12 (IC50 = 56.72 and 60.62 µg/mL, respectively). The highest lipoxidase inhibitory activity was determined for peptide ER-13 (IC50 = 84.35 µg/mL). Peptide RQ-9 was characterized by the highest COX inhibitory activity (0.31 and 4.77 µg/mL for COX-1 and COX-2, respectively). Only peptide RQ-9 inhibited S. enteritidis ATCC 4931 growth (42%-48%) in all tested concentrations (15.62-250 mg/mL).
Collapse
Affiliation(s)
- Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, St. Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Paula Ćwiek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (U.Z.); (P.Ć.); (B.B.)
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland;
| |
Collapse
|
24
|
Reina JC, Pérez-Victoria I, Martín J, Llamas I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar Drugs 2019; 17:md17090494. [PMID: 31450549 PMCID: PMC6780304 DOI: 10.3390/md17090494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The cell density-dependent mechanism, quorum sensing (QS), regulates the expression of virulence factors. Its inhibition has been proposed as a promising new strategy to prevent bacterial pathogenicity. In this study, 827 strains from the microbiota of sea anemones and holothurians were screened for their ability to produce quorum-sensing inhibitor (QSI) compounds. The strain M3-10, identified as Vibrio alginolyticus by 16S rRNA gene sequencing, as well as ANIb and dDDH analyses, was selected for its high QSI activity. Bioassay-guided fractionation of the cell pellet extract from a fermentation broth of strain M3-10, followed by LC–MS and NMR analyses, revealed tyramine and N-acetyltyramine as the active compounds. The QS inhibitory activity of these molecules, which was confirmed using pure commercially available standards, was found to significantly inhibit Chromobacterium violaceum ATCC 12472 violacein production and virulence factors, such as pyoverdine production, as well as swarming and twitching motilities, produced by Pseudomonas aeruginosa PAO1. This constitutes the first study to screen QSI-producing strains in the microbiota of anemones and holothurians and provides an insight into the use of naturally produced QSI as a possible strategy to combat bacterial infections.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ignacio Pérez-Victoria
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain.
| | - Jesús Martín
- MEDINA Foundation, Andalusian Center of Excellence for Research into Innovative Medicines, Health Sciences Technological Park (PTS), Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|