1
|
Yang X, Ahmad K, Yang T, Fan Y, Zhao F, Jiang S, Chen P, Hou H. Collagen-based hydrogel sol-gel phase transition mechanism and their applications. Adv Colloid Interface Sci 2025; 340:103456. [PMID: 40037018 DOI: 10.1016/j.cis.2025.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Collagen-based hydrogels represent a crucial class of biomaterials for their desirable physicochemical and biochemical properties. The variation in ingredients, gelation conditions, and crosslinking techniques may impact the physicochemical and biological properties of collagen-based hydrogels. However, the specific effects of these parameters on the gelation mechanisms of novel hydrogels and the relationships between fabrication parameters and the resultant characteristics of these hydrogels remain elusive. This review discussed the sol-gel phase transition mechanisms of collagen-based hydrogels, emphasizing the impact of gelation conditions, crosslinking agents, and additional polymers. This article highlights the potential of natural ingredients and safe modification technologies as effective strategies to mitigate the harmful effects of synthetic toxic components in products. Furthermore, this review summarizes constitutive models of collagen hydrogels, which serve as valuable tools for designing and customizing hydrogels to meet specific application requirements by simulating their mechanical and rheological properties. Additionally, the article concludes by briefly introducing applications of novel collagen-based hydrogels with desirable functions and properties. This review further deals with the theoretical support for the rational design and customization of innovative hydrogels and inspires future collagen-based biomaterial development.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Fei Zhao
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Shanshan Jiang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
2
|
Shao Q, Wang Z, Yi S. Application of Composite Soaking Solution in Fillet Storage and Caco-2 Cell Antioxidant Repair. Foods 2025; 14:442. [PMID: 39942035 PMCID: PMC11816374 DOI: 10.3390/foods14030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The inhibitory effect of compound soaking solution on the quality deterioration of fish fillets during storage and its repair effect on a cell oxidative damage model were investigated. Water holding capacity, cooking loss, thawing loss, thiobarbituric acid and sensory evaluation were used to verify that the composite soaking solution could improve the water loss and quality deterioration of fillets during frozen storage. At 180 d, water holding capacity was increased by 4.59% in the compound soaking solution group compared with the control. Cooking loss decreased by 6.47%, and thawing loss decreased by 13.06% (p < 0.05). The TBA value was reduced by 50%, and the degree of lipid oxidation was lower (p < 0.05). The results of the microstructure analysis showed that the tissue structure of fillets treated by the compound soaking solution was more orderly. The oxidative damage model of cells was achieved by soaking in treated fish fillet digestive juice, which inhibited the increase in reactive oxygen species content, maintained the integrity of the cell structure, and increased cell viability by 32.24% (p < 0.05). Compound soaking solution treatment could inhibit the quality deterioration of fish fillets during storage, and the digestive solution of fish fillets could improve the oxidative stress injury of Caco-2 cells induced by H2O2.
Collapse
Affiliation(s)
| | | | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (Q.S.); (Z.W.)
| |
Collapse
|
3
|
Shaik MI, Rahman SHA, Yusri AS, Ismail-Fitry MR, Kumar NSS, Sarbon NM. A review on the processing technique, physicochemical, and bioactive properties of marine collagen. J Food Sci 2024; 89:5205-5229. [PMID: 39126690 DOI: 10.1111/1750-3841.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Collagens are conventionally derived from bovine and porcine sources. However, these sources were commonly associated with infectious diseases such as bovine spongiform encephalopathy, foot and mouth disease, autoimmune and allergic reactions, and religious constraints. The significant amount of collagen available in marine species, especially fish skins, scales, fins, and bones, shows that marine species can be a potential alternative source to mammalian collagen. Therefore, this review aims to give a clearer outlook on the processing techniques of marine collagen and its physicochemical and bioactive properties as a potential alternative to mammalian collagen. The two most suitable extraction methods for marine collagen are pepsin-soluble extraction and ultrasound-assisted extraction. Additionally, marine collagen's physicochemical and bioactive properties, such as antioxidants, wound healing, tissue engineering, and cosmetic biomaterial have been thoroughly discussed in this review. PRACTICAL APPLICATION: Collagen extracted from marine sources showed its potential in physicochemical and bioactive properties, including antioxidants and wound-healing capabilities, as an alternative to mammalian collagen. The significant amount of collagen found in marine species, particularly in fish skins, scales, bones, and sea cucumbers, suggests that marine sources could be a viable alternative to land mammal collagen due to their abundance and accessibility. The ultrasound-assisted extraction technique has improved the extracted marine collagen's physicochemical and bioactivity properties and quality properties.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Siti Hajar Abdul Rahman
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anis Syafiqah Yusri
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nune Satya Sampath Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
4
|
Sun Z, Ge Y, Cai X, Liu Q, Yang Z, Chen X, Zheng Z. A non-covalent binding strategy for the stabilization of fish collagen triple helices to promote its applications. Food Hydrocoll 2024; 152:109896. [DOI: 10.1016/j.foodhyd.2024.109896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Kumar Vate N, Pawel Strachowski P, Undeland I, Abdollahi M. Structural and functional properties of collagen isolated from lumpfish and starfish using isoelectric precipitation vs salting out. Food Chem X 2023; 18:100646. [PMID: 37008722 PMCID: PMC10053375 DOI: 10.1016/j.fochx.2023.100646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The possibility of replacing the very time and resource demanding salting out (SO) method with isoelectric precipitation (IP) during collagen extraction from common starfish and lumpfish was investigated. The effect of IP on yield, structural and functional properties of the collagens was therefore compared with SO. Application of IP resulted in a higher or similar collagen mass yield compared with SO from starfish and lumpfish, respectively. However, the purity of collagens recovered with IP was lower than those recovered with SO. Replacing SO with IP did not affect polypeptide pattern and tropohelical structural integrity of collagen from the two resources as revealed with SDS-PAGE and FTIR analysis. Thermal stability and fibril formation capacity of collagens recovered with IP were also well preserved. Overall, the results showed that the IP can be a promising resource smart alternative for the classic SO precipitation during collagen extraction from marine resources.
Collapse
|
6
|
Wang L, Qu Y, Li W, Wang K, Qin S. Effects and metabolism of fish collagen sponge in repairing acute wounds of rat skin. Front Bioeng Biotechnol 2023; 11:1087139. [PMID: 36911203 PMCID: PMC9992718 DOI: 10.3389/fbioe.2023.1087139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Objective: Study the repair effect of tilapia collagen on acute wounds, and the effect on the expression level of related genes and its metabolic direction in the repair process. Materials and methods: After the full-thickness skin defect model was constructed in standard deviation rats, the wound healing effect was observed and evaluated by means of characterization, histology, and immunohistochemistry. RT-PCR, fluorescence tracer, frozen section and other techniques were used to observe the effect of fish collagen on the expression of related genes and its metabolic direction in the process of wound repair. Results: After implantation, there was no immune rejection reaction, fish collagen fused with new collagen fibers in the early stage of wound repair, and was gradually degraded and replaced by new collagen in the later stage. It has excellent performance in inducing vascular growth, promoting collagen deposition and maturation, and re-epithelialization. The results of fluorescent tracer showed that fish collagen was decomposed, and the decomposition products were involved in the wound repair process and remained at the wound site as a part of the new tissue. RT-PCR results showed that, without affecting collagen deposition, the expression level of collagen-related genes was down-regulated due to the implantation of fish collagen. Conclusion: Fish collagen has good biocompatibility and wound repair ability. It is decomposed and utilized in the process of wound repair to form new tissues.
Collapse
Affiliation(s)
- Lei Wang
- The Affiliated Hospital of Weifang Medical University, Weifang, China.,Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Yantai, China
| | - Yan Qu
- The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wenjun Li
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Kai Wang
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Song Qin
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
7
|
Chanmangkang S, Wangtueai S, Pansawat N, Tepwong P, Panya A, Maneerote J. Characteristics and Properties of Acid- and Pepsin-Solubilized Collagens from the Tail Tendon of Skipjack Tuna ( Katsuwonus pelamis). Polymers (Basel) 2022; 14:polym14235329. [PMID: 36501723 PMCID: PMC9738187 DOI: 10.3390/polym14235329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The tail tendons of skipjack tuna (Katsuwonus pelamis), a by-product from the meat-separation process in canned-tuna production, was used as an alternative source of collagen extraction. The acid-solubilized collagens using vinegar (VTC) and acetic-acid (ATC) extraction and pepsin-solubilized collagen (APTC) were extracted from tuna-tail tendon. The physiochemical properties and characteristics of those collagens were investigated. The obtained yield of VTC, ATC, and APTC were 7.88 ± 0.41, 8.67 ± 0.35, and 12.04 ± 0.07%, respectively. The determination of protein-collagen solubility, the effect of pH and NaCl on collagen solubility, Fourier-transform infrared spectroscopy (FTIR) spectrum, and microstructure of the collagen-fibril surface using a scanning electron microscope (SEM) were done. The protein solubility of VTC, ATC, and APTC were 0.44 ± 0.03, 0.52 ± 0.07, and 0.67 ± 0.12 mg protein/mg collagen. The solubility of collagen decreased with increasing of NaCl content. These three collagens were good solubility at low pH with the highest solubility at pH 5. The FTIR spectrum showed absorbance of Amide A, Amide B, Amide I, Amide II, and Amide III groups as 3286-3293 cm-1, 2853-2922 cm-1, 1634-1646 cm-1, 1543-1544 cm-1, and 1236-1237 cm-1, respectively. The SEM analysis indicated a microstructure of collagen surface as folding of fibril with small pore.
Collapse
Affiliation(s)
- Sagun Chanmangkang
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand
- Correspondence: (S.W.); (J.M.); Tel.: +66-34-870-709 (S.W.)
| | - Nantipa Pansawat
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Pramvadee Tepwong
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Atikorn Panya
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Jirawan Maneerote
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: (S.W.); (J.M.); Tel.: +66-34-870-709 (S.W.)
| |
Collapse
|
8
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Ahmed M, Anand A, Verma AK, Patel R. In-vitro self-assembly and antioxidant properties of collagen type I from Lutjanus erythropterus, and Pampus argenteus skin. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Ahmed M, Verma AK, Patel R. Physiochemical, antioxidant, and food simulant release properties of collagen‐carboxymethyl cellulose films enriched with
Berberis lyceum
root extract for biodegradable active food packaging. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mofieed Ahmed
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi‐110025 India
- Department of Biosciences Jamia Millia Islamia, New Delhi‐110025 India
| | - Amit Kumar Verma
- Department of Biosciences Jamia Millia Islamia, New Delhi‐110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi‐110025 India
| |
Collapse
|
12
|
Devita L, Lioe HN, Nurilmala M, Suhartono MT. The Bioactivity Prediction of Peptides from Tuna Skin Collagen Using Integrated Method Combining In Vitro and In Silico. Foods 2021; 10:2739. [PMID: 34829019 PMCID: PMC8625179 DOI: 10.3390/foods10112739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/25/2022] Open
Abstract
The hydrolysates and peptide fractions of bigeye tuna (Thunnus obesus) skin collagen have been successfully studied. The hydrolysates (HPA, HPN, HPS, HBA, HBN, HBS) were the result of the hydrolysis of collagen using alcalase, neutrase, and savinase. The peptide fractions (PPA, PPN, PPS, PBA, PBN, PBS) were the fractions obtained following ultrafiltration of the hydrolysates. The antioxidant activities of the hydrolysates and peptide fractions were studied using the DPPH method. The effects of collagen types, enzymes, and molecular sizes on the antioxidant activities were analyzed using profile plots analysis. The amino acid sequences of the peptides in the fraction with the highest antioxidant activity were analyzed using LC-MS/MS. Finally, their bioactivity and characteristics were studied using in silico analysis. The hydrolysates and peptide fractions provided antioxidant activity (6.17-135.40 µmol AAE/g protein). The lower molecular weight fraction had higher antioxidant activity. Collagen from pepsin treatment produced higher activity than that of bromelain treatment. The fraction from collagen hydrolysates by savinase treatment had the highest activity compared to neutrase and alcalase treatments. The peptides in the PBN and PPS fractions of <3 kDa had antidiabetic, antihypertensive and antioxidant activities. In conclusion, they have the potential to be used in food and health applications.
Collapse
Affiliation(s)
- Liza Devita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
- The Ministry of Agriculture Republic Indonesia, Jakarta 12550, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| | - Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia;
| | - Maggy T. Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| |
Collapse
|
13
|
Naomi R, Ridzuan PM, Bahari H. Current Insights into Collagen Type I. Polymers (Basel) 2021; 13:2642. [PMID: 34451183 PMCID: PMC8399689 DOI: 10.3390/polym13162642] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen type I (Col-I) is unique due to its high biocompatibility in human tissue. Despite its availability from various sources, Col-I naturally mimics the extracellular matrix (ECM) and generally makes up the larger protein component (90%) in vasculature, skin, tendon bone, and other tissue. The acceptable physicochemical properties of native Col-I further enhance the incorporation of Col-I in various fields, including pharmaceutical, cosmeceutical, regenerative medicine, and clinical. This review aims to discuss Col-I, covering the structure, various sources of availability, native collagen synthesis, current extraction methods, physicochemical characteristics, applications in various fields, and biomarkers. The review is intended to provide specific information on Col-I currently available, going back five years. This is expected to provide a helping hand for researchers who are concerned about any development on collagen-based products particularly for therapeutic fields.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
14
|
Marine Skeletal Biopolymers and Proteins and Their Biomedical Application. Mar Drugs 2021; 19:md19070389. [PMID: 34356814 PMCID: PMC8305160 DOI: 10.3390/md19070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Skeletal biopolymers and proteins in marine organisms are present as complex mixtures and have great potential applications in the biomedical field [...].
Collapse
|
15
|
Alishahedani ME, Yadav M, McCann KJ, Gough P, Castillo CR, Matriz J, Myles IA. Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing. PLoS One 2021; 16:e0253669. [PMID: 34143844 PMCID: PMC8213172 DOI: 10.1371/journal.pone.0253669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The scratch assay is an in vitro technique used to analyze cell migration, proliferation, and cell-to-cell interaction. In the assay, cells are grown to confluence and then ‘scratched’ with a sterile instrument. For the cells in the leading edge, the resulting polarity induces migration and proliferation in attempt to ‘heal’ the modeled wound. Keloid scars are known to have an accelerated wound closure phenotype in the scratch assay, representing an overactivation of wound healing. We performed a qualitative review of the recent literature searching for inhibitors of scratch assay activity that were already available in topical formulations under the hypothesis that such compounds may offer therapeutic potential in keloid treatment. Although several shortcomings in the scratch assay literature were identified, caffeine and allicin successfully inhibited the scratch assay closure and inflammatory abnormalities in the commercially available keloid fibroblast cell line. Caffeine and allicin also impacted ATP production in keloid cells, most notably with inhibition of non-mitochondrial oxygen consumption. The traditional Chinese medicine, shikonin, was also successful in inhibiting scratch closure but displayed less dramatic impacts on metabolism. Together, our results partially summarize the strengths and limitations of current scratch assay literature and suggest clinical assessment of the therapeutic potential for these identified compounds against keloid scars may be warranted.
Collapse
Affiliation(s)
- Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Manoj Yadav
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Katelyn J. McCann
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Portia Gough
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Carlos R. Castillo
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Jobel Matriz
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Devita L, Nurilmala M, Lioe HN, Suhartono MT. Chemical and Antioxidant Characteristics of Skin-Derived Collagen Obtained by Acid-Enzymatic Hydrolysis of Bigeye Tuna ( Thunnus obesus). Mar Drugs 2021; 19:222. [PMID: 33923409 PMCID: PMC8072911 DOI: 10.3390/md19040222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
The utilization of bigeye tuna skin as a source of collagen has been increasing the value of these skins. In this study, the quality of the skin was studied first. The skin after 14 h freeze-drying showed a high protein level (65.42% ± 0.06%, db), no histamine and a lack of heavy metals. The collagens were extracted through acid and acid-enzymatic methods. The enzymes used were bromelain, papain, pepsin, and trypsin. The two highest-yield collagens were pepsin-soluble collagen (PSC) and bromelain-soluble collagen (BSC). Both were type I collagen, based on SDS-PAGE and FTIR analysis. They dissolved very well in dimethyl sulfoxide and distilled water. The pH ranges were 4.60-4.70 and 4.30-4.40 for PSC and BSC, respectively. PSC and BSC were free from As, Cd, Co, Cr, Cu, and Pb. They showed antioxidant activities, as determined by the DPPH method and the reducing power method. In conclusion, bigeye tuna skin shows good potential as an alternative source of mammalian collagen. Although further work is still required, PSC and BSC showed the potential to be further used as antioxidant compounds in food applications. Other biological tests of these collagens might also lead to other health applications.
Collapse
Affiliation(s)
- Liza Devita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
- The Ministry of Agriculture Republic Indonesia, Jakarta 12550, Indonesia
| | - Mala Nurilmala
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia;
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| | - Maggy T. Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (L.D.); (H.N.L.)
| |
Collapse
|
17
|
Oliveira VDM, Assis CRD, Costa BDAM, Neri RCDA, Monte FTD, Freitas HMSDCV, França RCP, Santos JF, Bezerra RDS, Porto ALF. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Zheng J, Tian X, Xu B, Yuan F, Gong J, Yang Z. Collagen Peptides from Swim Bladders of Giant Croaker ( Nibea japonica) and Their Protective Effects against H 2O 2-Induced Oxidative Damage toward Human Umbilical Vein Endothelial Cells. Mar Drugs 2020; 18:E430. [PMID: 32824671 PMCID: PMC7460321 DOI: 10.3390/md18080430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022] Open
Abstract
Five different proteases were used to hydrolyze the swim bladders of Nibea japonica and the hydrolysate treated by neutrase (collagen peptide named SNNHs) showed the highest DPPH radical scavenging activity. The extraction process of SNNHs was optimized by response surface methodology, and the optimal conditions were as follows: a temperature of 47.2 °C, a pH of 7.3 and an enzyme concentration of 1100 U/g, which resulted in the maximum DPPH clearance rate of 95.44%. Peptides with a Mw of less than 1 kDa (SNNH-1) were obtained by ultrafiltration, and exhibited good scavenging activity for hydroxyl radicals, ABTS radicals and superoxide anion radicals. Furthermore, SNNH-1 significantly promoted the proliferation of HUVECs, and the protective effect of SNNH-1 against oxidative damage of H2O2-induced HUVECs was investigated. The results indicated that all groups receiving SNNH-1 pretreatment showed an increase in GSH-Px, SOD, and CAT activities compared with the model group. In addition, SNNH-1 pretreatment reduced the levels of ROS and MDA in HUVECs with H2O2-induced oxidative damage. These results indicate that collagen peptides from swim bladders of Nibea japonica can significantly reduce the oxidative stress damage caused by H2O2 in HUVECs and provides a basis for the application of collagen peptides in the food industry, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Jiawen Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Xiaoxiao Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Baogui Xu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Falei Yuan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Jianfang Gong
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| |
Collapse
|
19
|
Moise V, Vasilca S, Baltac A, Pintilie C, Virgolici M, Cutrubinis M, Kamerzan C, Dragan D, Ene M, Albota F, Maier S. Physicochemical study for characterization of lyophilized collagens irradiated with gamma radiation and for optimization of medical device manufacturing process. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Zhang W, Zheng J, Tian X, Tang Y, Ding G, Yang Z, Jin H. Pepsin-Soluble Collagen from the Skin of Lophius litulo: A Preliminary Study Evaluating Physicochemical, Antioxidant, and Wound Healing Properties. Mar Drugs 2019; 17:md17120708. [PMID: 31888163 PMCID: PMC6950534 DOI: 10.3390/md17120708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
The structure of pepsin-solubilized collagen (PSC) obtained from the skin of Lophius litulon was analyzed using the sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). SDS-PAGE results showed that PSC from Lophius litulon skin was collagen type I and had collagen-specific α1, α2, β, and γ chains. FTIR results indicated that the infrared spectrum of PSC ranged from 400 to 4000 cm-1, with five main amide bands. SEM revealed the microstructure of PSC, which consisted of clear fibrous and porous structures. In vitro antioxidant studies demonstrated that PSC revealed the scavenging ability for 2,2-diphenyl-1-picrylhydrazyl (DPPH), HO·, O2-·, and ABTS·. Moreover, animal experiments were conducted to evaluate the biocompatibility of PSC. The collagen sponge group showed a good biocompatibility in the skin wound model and may play a positive role in the progression of the healing process. The cumulative results suggest that collagen from the skin of Lophius litulon has potential applications in wound healing due to its good biocompatibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huoxi Jin
- Correspondence: ; Tel.: +86-0580-226-0600; Fax: +86-0580-254-781
| |
Collapse
|
21
|
Thaweekitphathanaphakdee S, Chanvorachote P, Prateepchinda S, Khongkow M, Sucontphunt A. Abalone Collagen Extracts Potentiate Stem Cell Properties of Human Epidermal Keratinocytes. Mar Drugs 2019; 17:E424. [PMID: 31330853 PMCID: PMC6669461 DOI: 10.3390/md17070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal, involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation, and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays. Cell migration assay was determined using the scratch wound healing test. Spheroid formation was evaluated and the expression level of stem cell markers was investigated by western blot analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin 19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness, which could be a potential active ingredient in cosmeceutical products.
Collapse
Affiliation(s)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sagaw Prateepchinda
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Apirada Sucontphunt
- The Herbal Medicinal Products Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| |
Collapse
|
22
|
Serine Protease from Nereis virens Inhibits H1299 Lung Cancer Cell Proliferation via the PI3K/AKT/mTOR Pathway. Mar Drugs 2019; 17:md17060366. [PMID: 31226829 PMCID: PMC6627947 DOI: 10.3390/md17060366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
This study explores the in vitro anti-proliferative mechanism between Nereis Active Protease (NAP) and human lung cancer H1299 cells. Colony formation and migration of cells were significantly lowered, following NAP treatment. Flow cytometry results suggested that NAP-induced growth inhibition of H1299 cells is linked to apoptosis, and that NAP can arrest the cells at the G0/G1 phase. The ERK/MAPK and PI3K/AKT/mTOR pathways were selected for their RNA transcripts, and their roles in the anti-proliferative mechanism of NAP were studied using Western blots. Our results suggested that NAP led to the downregulation of p-ERK (Thr 202/Tyr 204), p-AKT (Ser 473), p-PI3K (p85), and p-mTOR (Ser 2448), suggesting that NAP-induced H1299 cell apoptosis occurs via the PI3K/AKT/mTOR pathway. Furthermore, specific inhibitors LY294002 and PD98059 were used to inhibit these two pathways. The effect of NAP on the downregulation of p-ERK and p-AKT was enhanced by the LY294002 (a PI3K inhibitor), while the inhibitor PD98059 had no obvious effect. Overall, the results suggested that NAP exhibits antiproliferative activity by inducing apoptosis, through the inhibition of the PI3K/AKT/mTOR pathway.
Collapse
|