1
|
Park CH, Park JH, Suh YJ. Perspective of 3D culture in medicine: transforming disease research and therapeutic applications. Front Bioeng Biotechnol 2024; 12:1491669. [PMID: 39749112 PMCID: PMC11693738 DOI: 10.3389/fbioe.2024.1491669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues (in vivo) and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research. Purpose 3D cell culture develops life sciences by mimicking the natural cellular environment. Cells in 3D cultures grow in three dimensions and interact with a matrix, fostering realistic cell behavior and interactions. This enhanced model offers significant advantages for diverse research areas. Methods By mimicking the cellular organization and functionalities found in human tissues, 3D cultures provide superior platforms for studying complex diseases like cancer and neurodegenerative disorders. This enables researchers to gain deeper insights into disease progression and identify promising therapeutic targets with greater accuracy. 3D cultures also play a crucial role in drug discovery by allowing researchers to effectively assess potential drugs' safety and efficacy. Results 3D cell culture's impact goes beyond disease research. It holds promise for tissue engineering. By replicating the natural tissue environment and providing a scaffold for cell growth, 3D cultures pave the way for regenerating damaged tissues, offering hope for treating burns, organ failure, and musculoskeletal injuries. Additionally, 3D cultures contribute to personalized medicine. Researchers can use patient-derived cells to create personalized disease models and identify the most effective treatment for each individual. Conclusion With ongoing advancements in cell imaging techniques, the development of novel biocompatible scaffolds and bioreactor systems, and a deeper understanding of cellular behavior within 3D environments, 3D cell culture technology stands poised to revolutionize various aspects of healthcare and scientific discovery.
Collapse
Affiliation(s)
- Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung Ho Park
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Yong Joon Suh
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
2
|
Mondal C, Mohanty R, Rana P, Khader AA, Raj BSH, Alqutub AW. Quality and Success of Bone Graft from Two Different Mandibular Sites Compared for Maxillary Ridge Augmentation: A Systematic Review. J Contemp Dent Pract 2024; 25:703-710. [PMID: 39533943 DOI: 10.5005/jp-journals-10024-3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
AIM This systematic review was undertaken to compare the quality of autogenous bone graft harvested from two different mandibular donor sites, that is, from the chin region and from posterior mandibular region for maxillary alveolar ridge augmentation and success after implant placement. MATERIALS AND METHODS Systematic searches were performed using PubMed, MEDLINE, and Cochrane electronic databases, which reported on the quality of autogenous harvested bone graft of the recipient site in maxillary alveolar ridge augmentation from a period of January 1995 to December 2020 using PRISMA guidelines. Studies were included if: They reported on bone grafts harvested from the chin and body region of the mandible. Time and nature of postoperative complications were reported. Quality comparison of autogenous bone graft from both chin and posterior mandible was done from the analysis of extracted data of all articles. The risk of bias was assessed by the Cochrane risk of bias tool and Newcastle-Ottawa Scale. RESULTS Out of the eight studies that have been included, five studies concluded that graft from the retromolar region of the mandible produced better quality bone graft compared with graft from the chin region. In contrast, two studies showed the opposite that graft from the chin is better in quality than the graft from the retromolar region. Whereas one study mentioned not being able to find any significant difference in the quality of two grafts. The implant placement also showed a maximum success rate in the retromolar region compared with the chin region in four studies whereas in one study, the success rate was better in the chin region and in three studies, no significant difference could be found in the success rate of implant placement in two different graft regions taken from two different donor sites of the mandible. CONCLUSION This systematic review demonstrates that the retromolar group has shown better results for ridge augmentation in the maxilla compared with the chin group. The retromolar group also produces better and more successful implant placement with fewer chances of failure compared with the chin group. CLINICAL SIGNIFICANCE In oral surgery, the use of dental implants for partial and complete edentulous jaw rehabilitation is standard procedure. Both hard and soft tissues must be present in adequate quantity and quality for implant dentistry to produce the best results. Patients with resorbed jaws can receive implant-supported restorations by a variety of reconstructive methods, such as tissue regeneration and the use of vascularized or nonvascularized grafts. How to cite this article: Mondal C, Mohanty R, Rana P, et al. Quality and Success of Bone Graft from Two Different Mandibular Sites Compared for Maxillary Ridge Augmentation: A Systematic Review. J Contemp Dent Pract 2024;25(7):703-710.
Collapse
Affiliation(s)
- Chitrita Mondal
- Department of Oral and Maxillofacial Surgery, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India, Phone: +91 8906393127, e-mail:
| | - Rajat Mohanty
- Department of Oral and Maxillofacial Surgery, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Priyanka Rana
- Department of Oral and Maxillofacial Surgery, K M Shah Dental College & Hospital, Vadodara, Gujarat, India
| | - Anas A Khader
- Department of Periodontology and Implant Dentistry, College of Dentistry, Qassim University, Kingdom of Saudi Arabia
| | - B S Harsha Raj
- Department of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Alaa W Alqutub
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Umm Al-Qura University, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Hosseini S, Parsaei H, Moosavifar M, Tavakoli N, Ahadi R, Roshanbinfar K. Static magnetic field enhances the bone remodelling capacity of human demineralized bone matrix in a rat animal model of cranial bone defects. J Mater Chem B 2024; 12:3774-3785. [PMID: 38535706 DOI: 10.1039/d3tb02299d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.
Collapse
Affiliation(s)
- SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, 3513138111, Semnan, Iran
| | - MirJavad Moosavifar
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
- Institut für experimentelle molekulare Bildgebung, RWTH Aachen University, Aachen 52074, Germany
| | - Narjes Tavakoli
- School of Industrial Design, College of Fine Arts, University of Tehran, 1415564583, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany.
| |
Collapse
|
4
|
Lau CS, Chua J, Prasadh S, Lim J, Saigo L, Goh BT. Alveolar Ridge Augmentation with a Novel Combination of 3D-Printed Scaffolds and Adipose-Derived Mesenchymal Stem Cells-A Pilot Study in Pigs. Biomedicines 2023; 11:2274. [PMID: 37626770 PMCID: PMC10452669 DOI: 10.3390/biomedicines11082274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Alveolar ridge augmentation is an important dental procedure to increase the volume of bone tissue in the alveolar ridge before the installation of a dental implant. To meet the high demand for bone grafts for alveolar ridge augmentation and to overcome the limitations of autogenous bone, allografts, and xenografts, researchers are developing bone grafts from synthetic materials using novel fabrication techniques such as 3D printing. To improve the clinical performance of synthetic bone grafts, stem cells with osteogenic differentiation capability can be loaded into the grafts. In this pilot study, we propose a novel bone graft which combines a 3D-printed polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold with adipose-derived mesenchymal stem cells (AD-MSCs) that can be harvested, processed and implanted within the alveolar ridge augmentation surgery. We evaluated the novel bone graft in a porcine lateral alveolar defect model. Radiographic analysis revealed that the addition of AD-MSCs to the PCL-TCP scaffold improved the bone volume in the defect from 18.6% to 28.7% after 3 months of healing. Histological analysis showed the presence of AD-MSCs in the PCL-TCP scaffold led to better formation of new bone and less likelihood of fibrous encapsulation of the scaffold. Our pilot study demonstrated that the loading of AD-MSCs improved the bone regeneration capability of PCL-TCP scaffolds, and our novel bone graft is suitable for alveolar ridge augmentation.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore; (C.S.L.); (L.S.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jasper Chua
- Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Jing Lim
- Osteopore International Pte Ltd., Singapore 618305, Singapore;
| | - Leonardo Saigo
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore; (C.S.L.); (L.S.)
| | - Bee Tin Goh
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore 168938, Singapore; (C.S.L.); (L.S.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
5
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
6
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Tawfeek GAE, Abdelgaber M, Gadallah S, Anis A, Sharshar A. A Novel Construct of Coral Granules-Poly-L-Lactic Acid Nanomembrane Sandwich Double Stem Cell Sheet Transplantation as Regenerative Therapy of Bone Defect Model. EXP CLIN TRANSPLANT 2023; 21:158-170. [PMID: 36919724 DOI: 10.6002/ect.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVES We examined the use of a new approach in nanotechnology and stem cell research as regenerative therapy for bone tissue defects. MATERIALS AND METHODS We compared in vitro osteogenic potential of human Wharton jelly mesenchymal stem cells using coral granules and poly-L-lactic acid nanofiber according to proliferation (by cck-8 kit) and osteogenes (runt-related transcription factor 2, alkaline phosphatase, osteonectin) by quantitative reverse transcription-polymerase chain reaction, alkaline phosphatase assay, calcium measurement, and assessment of mineralization by Alizarin red and von Kossa staining. To overcome the limitations of natural coral, we made a modification by packaging the coral granules-human Wharton jelly mesenchymal stem cells by nanomembrane-human Wharton jelly mesenchymal stem cells to form sandwich double cell sheets and compared this hole with other holes (one was filled by human Wharton jelly mesenchymal stem cell suspension, and the other was filled by coral granules saturated with preinduced mesenchymal stem cells) by radiological and histopathological studies for repairing the bone gap. RESULTS Collagen-coated poly-L-lactic acid showed higher mRNA levels for all osteogenes (P < .001), higher alkaline phosphatase and calcium content (P < .001), and greater stainability. Our in vivo experiment showed that the holes implanted with sandwich double cell sheet-poly-L-lactic acid coral were completely filled mature compact bone. The holes implanted with human Wharton jelly mesenchymal stem cells alone were filled with immature compact bone. Holes implanted with coral granules-human Wharton jelly mesenchymal stem cells were filled with condensed connective tissue. CONCLUSIONS Poly-L-lactic acid nanofiber has greater osteogenic differentiating effect than the coral granules. The new approach of sDCS-PLLA-coral construct proved success for bone regeneration and repairing the bone gap and this may improve the design of tissue constructs for bone tissue regenerative therapy.
Collapse
|
8
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
9
|
Xu X, Zhuo J, Xiao L, Xu Y, Yang X, Li Y, Du Z, Luo K. Nanosilicate-Functionalized Polycaprolactone Orchestrates Osteogenesis and Osteoblast-Induced Multicellular Interactions for Potential Endogenous Vascularized Bone Regeneration. Macromol Biosci 2021; 22:e2100265. [PMID: 34705332 DOI: 10.1002/mabi.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Massive oral and maxillofacial bone defect regeneration remains a major clinical challenge due to the absence of functionalized bone grafts with ideal mechanical and proregeneration properties. In the present study, Laponite (LAP), a synthetic nanosilicate, is incorporated into polycaprolactone (PCL) to develop a biomaterial for bone regeneration. It is explored whether LAP-embedded PCL would accelerate bone regeneration by orchestrating osteoblasts to directly and indirectly induce bone regeneration processes. The results confirmed the presence of LAP in PCL, and LAP is distributed in the exfoliated structure without aggregates. Incorporation of LAP in PCL slightly improved the compressive properties. LAP-embedded PCL is biocompatible and exerts pronounced enhancements in cell viability, osteogenic differentiation, and extracellular matrix formation of osteoblasts. Furthermore, osteoblasts cultured on LAP-embedded PCL facilitate angiogenesis of vessel endothelial cells and alleviate osteoclastogenesis of osteoclasts in a paracrine manner. The addition of LAP to the PCL endows favorable bone formation in vivo. Based upon these results, LAP-embedded PCL shows great potential as an ideal bone graft that exerts both space-maintaining and vascularized bone regeneration synergistic effects and can be envisioned for oral and maxillofacial bone defect regeneration.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jin Zhuo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zhibin Du
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, 4059, Australia
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021; 26:3007. [PMID: 34070157 PMCID: PMC8158510 DOI: 10.3390/molecules26103007] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
After tooth loss, bone resorption is irreversible, leaving the area without adequate bone volume for successful implant treatment. Bone grafting is the only solution to reverse dental bone loss and is a well-accepted procedure required in one in every four dental implants. Research and development in materials, design and fabrication technologies have expanded over the years to achieve successful and long-lasting dental implants for tooth substitution. This review will critically present the various dental bone graft and substitute materials that have been used to achieve a successful dental implant. The article also reviews the properties of dental bone grafts and various dental bone substitutes that have been studied or are currently available commercially. The various classifications of bone grafts and substitutes, including natural and synthetic materials, are critically presented, and available commercial products in each category are discussed. Different bone substitute materials, including metals, ceramics, polymers, or their combinations, and their chemical, physical, and biocompatibility properties are explored. Limitations of the available materials are presented, and areas which require further research and development are highlighted. Tissue engineering hybrid constructions with enhanced bone regeneration ability, such as cell-based or growth factor-based bone substitutes, are discussed as an emerging area of development.
Collapse
Affiliation(s)
- Rusin Zhao
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Ruijia Yang
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Paul R. Cooper
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium;
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand; (R.Z.); (R.Y.); (P.R.C.)
| |
Collapse
|
11
|
Preclinical Evaluation of an Innovative Bone Graft of Marine Origin for the Treatment of Critical-Sized Bone Defects in an Animal Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autogenous cancellous bone graft is the current gold standard of treatment for the management of bone defects since it possesses the properties of osteoinduction, osteoconduction, and osteogenesis. Xenografts and synthetic grafts have been widely reported as available and low-cost alternatives, which retain good osteoconductive and mechanical properties. Given the rich biodiversity of ocean organisms, marine sources are of particular interest in the search for alternative bone grafts with enhanced functionalities. The purpose of this paper is to assess the biocompatibility of a marine-derived bone graft obtained from shark tooth, which is an environmentally sustainable and abundant raw material from fishing. This research presents the findings of a preclinical trial—following UNE-EN ISO 10993—that induced a critical-sized bone defect in a rabbit model and compared the results with a commercial bovine-derived bone graft. Evaluation by micro-computed tomography and histomorphometric analysis 12 weeks after implantation revealed good osseointegration, with no signs of inflammatory foreign body reactions, fibrosis, or necrosis in any of the cases. The shark tooth-derived bone graft yielded significantly higher new bone mineral density values (54 ± 6%) than the control (27 ± 8%). Moreover, the percentage of intersection values were much higher (86 ± 8%) than the bovine-derived bone graft (30 ± 1%) used as control. The area of occupancy by bone tissue in the test material (38 ± 5%) also gave higher values than the control (30 ± 6%). The role of physicochemical properties, biphasic structure, and composition on the stimulation of bone regeneration is also discussed.
Collapse
|
12
|
Cellular Technologies in Traumatology: from Cells to Tissue Engineering. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Lim KT, Patel DK, Dutta SD, Choung HW, Jin H, Bhattacharjee A, Chung JH. Human Teeth-Derived Bioceramics for Improved Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2396. [PMID: 33266215 PMCID: PMC7761315 DOI: 10.3390/nano10122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is one of the most promising candidates of the calcium phosphate family, suitable for bone tissue regeneration due to its structural similarities with human hard tissues. However, the requirements of high purity and the non-availability of adequate synthetic techniques limit the application of synthetic HAp in bone tissue engineering. Herein, we developed and evaluated the bone regeneration potential of human teeth-derived bioceramics in mice's defective skulls. The developed bioceramics were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (FE-SEM). The developed bioceramics exhibited the characteristic peaks of HAp in FTIR and XRD patterns. The inductively coupled plasma mass spectrometry (ICP-MS) technique was applied to determine the Ca/P molar ratio in the developed bioceramics, and it was 1.67. Cytotoxicity of the simulated body fluid (SBF)-soaked bioceramics was evaluated by WST-1 assay in the presence of human alveolar bone marrow stem cells (hABMSCs). No adverse effects were observed in the presence of the developed bioceramics, indicating their biocompatibility. The cells adequately adhered to the bioceramics-treated media. Enhanced bone regeneration occurred in the presence of the developed bioceramics in the defected skulls of mice, and this potential was profoundly affected by the size of the developed bioceramics. The bioceramics-treated mice groups exhibited greater vascularization compared to control. Therefore, the developed bioceramics have the potential to be used as biomaterials for bone regeneration application.
Collapse
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.)
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.)
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151921, Korea;
| | - Hexiu Jin
- Department of Plastic and Traumatic Surgery, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100069, China;
| | - Arjak Bhattacharjee
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, India;
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151921, Korea
| |
Collapse
|
14
|
Mioara Piticescu R, Madalina Cursaru L, Negroiu G, Florentina Ciobota C, Neagoe C, Safranchik D. Innovative Hybrid Materials with Improved Tensile Strength Obtained by 3D Printing. Biomaterials 2020. [DOI: 10.5772/intechopen.91296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Barium titanate (BT) and barium strontium titanate (BST) are one of the most studied ferroelectric materials with excellent piezoelectric properties, which can be used to stimulate bone formation by applying an electrical field. It is known that this ceramic is biocompatible and can be used for medical applications. New hybrid materials based on BT and collagen and BST and collagen, with potential applications in bone reconstruction, are presented, emphasizing the potential of fabricating 3D structures by integrating hydrothermal synthesis with additive manufacturing. Designing such structures may take advantage of rheological characterization at single-molecule level for some elastic biopolymers like titin and collagen and their molecular dissection into structural motifs that independently contribute to the protein viscoelasticity. Atomic force spectroscopy measurements on synthetic polypeptides showed that a polypeptide chain containing Ig domain modules is protected against rupture at high stretch by Ig domain unfolding, an important mechanism for stress relaxation in titin molecules. This property may be exploited to enhance the tensile strength of a 3D structure by adding specific synthetic polypeptides to the composition of the printing paste.
Collapse
|
15
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
16
|
Gheysari H, Mohandes F, Mazaheri M, Dolatyar B, Askari M, Simchi A. Extraction of Hydroxyapatite Nanostructures from Marine Wastes for the Fabrication of Biopolymer-Based Porous Scaffolds. Mar Drugs 2019; 18:E26. [PMID: 31892123 PMCID: PMC7024202 DOI: 10.3390/md18010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional porous nanocomposites consisting of gelatin-carboxymethylcellulose (CMC) cross-linked by carboxylic acids biopolymers and monophasic hydroxyapatite (HA) nanostructures were fabricated by lyophilization, for soft-bone-tissue engineering. The bioactive ceramic nanostructures were prepared by a novel wet-chemical and low-temperature procedure from marine wastes containing calcium carbonates. The effect of surface-active molecules, including sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB), on the morphology of HA nanostructures is shown. It is demonstrated that highly bioactive and monophasic HA nanorods with an aspect ratio > 10 can be synthesized in the presence of SDS. In vitro studies on the bioactive biopolymer composite scaffolds with varying pore sizes, from 100 to 300 μm, determine the capacity of the developed procedure to convert marine wastes to profitable composites for tissue engineering.
Collapse
Affiliation(s)
- Hengameh Gheysari
- Department of Materials Science and Engineering, Sharif University of Technology, International Campus, P.O. Box 79417-76655, Kish Island, Iran;
| | - Fatemeh Mohandes
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9161, Azadi Avenue, Tehran 14588, Iran; (F.M.); (M.M.); (M.A.)
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9161, Azadi Avenue, Tehran 14588, Iran; (F.M.); (M.M.); (M.A.)
| | - Banafsheh Dolatyar
- Department of Cell and Developmental Biology, School of Biological Sciences, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran, Iran;
| | - Masoud Askari
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9161, Azadi Avenue, Tehran 14588, Iran; (F.M.); (M.M.); (M.A.)
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9161, Azadi Avenue, Tehran 14588, Iran; (F.M.); (M.M.); (M.A.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588, Iran
| |
Collapse
|