1
|
Oyón Díaz de Cerio J, Venneri G, Orefice I, Forestiero M, Baena CR, Tassone GB, Percopo I, Sardo A, Panno ML, Giordano F, Di Dato V. Effects of Amphidinium carterae Phytocompounds on Proliferation and the Epithelial-Mesenchymal Transition Process in T98G Glioblastoma Cells. Mar Drugs 2025; 23:173. [PMID: 40278295 PMCID: PMC12029094 DOI: 10.3390/md23040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive type of brain cancer, frequently invasive, with a low survival rate and complicated treatment. Recent studies have shown the modulation of epithelial-mesenchymal transition (EMT) biomarkers in glioblastoma cells associated with tumor progression, chemoresistance, and relapse after treatment. GBM handlings are based on aggressive chemical therapies and surgical resection with poor percentage of survival, boosting the search for more specific remedies. Marine eukaryotic microalgae are rapidly advancing as a source of anticancer drugs due to their ability to produce potent secondary metabolites with biological activity. Among such microalgae, dinoflagellates, belonging to the species Amphidinium carterae, are known producers of neurotoxins and cytotoxic compounds. We tested the capability of chemical extracts from two different strains of A. carterae to modulate the EMT markers in T98G, human GBM cells. In vitro proliferation and migration studies and EMT biomarkers' abundance and modulation assays showed that the different A. carterae strains differently modulated both EMT markers and the proliferation/migration capability of GBM cells. This study sets the bases to find a marine microalgae-derived natural compound that could potentially target the epithelial-mesenchymal transition in brain-derived tumor types.
Collapse
Affiliation(s)
- Julia Oyón Díaz de Cerio
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Giulia Venneri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Ida Orefice
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Martina Forestiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Carlos Roman Baena
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Gianluca Bruno Tassone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Isabella Percopo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn Napoli, 80122 Naples, Italy;
| | - Angela Sardo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (G.V.); (M.F.); (G.B.T.); (M.L.P.)
| | - Valeria Di Dato
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, 80133 Naples, Italy; (J.O.D.d.C.); (I.O.); (C.R.B.); (A.S.)
| |
Collapse
|
2
|
Cutolo EA, Campitiello R, Di Dato V, Orefice I, Angstenberger M, Cutolo M. Marine Phytoplankton Bioactive Lipids and Their Perspectives in Clinical Inflammation. Mar Drugs 2025; 23:86. [PMID: 39997210 PMCID: PMC11857744 DOI: 10.3390/md23020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Marine phytoplankton is an emerging source of immunomodulatory bioactive lipids (BLs). Under physiological growth conditions and upon stress challenges, several eukaryotic microalgal species accumulate lipid metabolites that resemble the precursors of animal mediators of inflammation: eicosanoids and prostaglandins. Therefore, marine phytoplankton could serve as a biotechnological platform to produce functional BLs with therapeutic applications in the management of chronic inflammatory diseases and other clinical conditions. However, to be commercially competitive, the lipidic precursor yields should be enhanced. Beside tailoring the cultivation of native producers, genetic engineering is a feasible strategy to accrue the production of lipid metabolites and to introduce heterologous biosynthetic pathways in microalgal hosts. Here, we present the state-of-the-art clinical research on immunomodulatory lipids from eukaryotic marine phytoplankton and discuss synthetic biology approaches to boost their light-driven biosynthesis.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (R.C.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (V.D.D.)
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (V.D.D.)
| | - Max Angstenberger
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany;
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (R.C.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
3
|
Gamba AG, Oakley CA, Ashley IA, Grossman AR, Weis VM, Suggett DJ, Davy SK. Oxylipin Receptors and Their Role in Inter-Partner Signalling in a Model Cnidarian-Dinoflagellate Symbiosis. Environ Microbiol 2024; 26:e70015. [PMID: 39702992 DOI: 10.1111/1462-2920.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2). Receptor abundance and localisation were compared between aposymbiotic anemones and symbiotic anemones hosting either native Breviolum minutum or non-native Durusdinium trenchii. All receptors were localised to the putative symbiosome of freshly isolated symbionts, suggesting a role in host-symbiont crosstalk. EP2, EP4 and TRPA1 abundance decreased in the gastrodermis of anemones hosting B. minutum, indicating potential downregulation of pathways mediated by these receptors. In contrast, GRIK2 abundance increased in anemones hosting D. trenchii in both the epidermis and gastrodermis; GRIK2 acts as a chemosensor of potential pathogens in other systems and could play a similar role here given D. trenchii's reputation as a sub-optimal partner for Aiptasia. This study contributes to the understanding of oxylipin signalling in the cnidarian-dinoflagellate symbiosis and supports further exploration of host-symbiont molecular signalling.
Collapse
Affiliation(s)
- Andrea G Gamba
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Immy A Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Barbarinaldi R, Di Costanzo F, Orefice I, Romano G, Carotenuto Y, Di Dato V. Prostaglandin pathway activation in the diatom Skeletonema marinoi under grazer pressure. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106395. [PMID: 38382127 DOI: 10.1016/j.marenvres.2024.106395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Prostaglandins (Pgs) are eicosanoid lipid mediators detected in all vertebrates, in some marine invertebrates, macroalgae and in diatoms, a class of eukaryotic microalgae composing the phytoplankton. The enzymes involved in the Pgs pathway were found to be differentially expressed in two strains of the diatom Skeletonema marinoi, named FE7 and FE60, already known to produce different levels of oxylipins, a class of secondary metabolites involved in the defence of diatoms against copepod predation, with FE7 being higher producer than FE60. In the present study we investigated the response of genes involved in the production of oxylipins and Pgs, evaluating their expression after the exposure to the copepod Temora stylifera. Our results highlighted a grazer feeding preference for FE60, the strain having low oxylipins content and reduced expression of Pgs enzymes, and an impact on the gene expression of the enzymes involved in oxylipins (i.e. lipoxygenase) and Pgs (i.e. cyclooxygenase) biosynthesis, especially in FE7. A time course evaluation of the gene expression over 24 h showed an upregulation of the essential enzyme in the Pgs pathway, the cyclooxygenase, in FE60 after 6 h of exposure to the grazer, differently from FE7 where no upregulation of gene expression in the presence of copepods was revealed. These results provide preliminary indications regarding the existence of a complex involvement of the Pgs pathway in the prey-predator interaction that requires further investigations.
Collapse
Affiliation(s)
- Roberta Barbarinaldi
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, Via Ammiraglio Ferdinando Acton 55, Giardini Molosiglio, 80133, Napoli, Italy.
| | - Federica Di Costanzo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, Via Ammiraglio Ferdinando Acton 55, Giardini Molosiglio, 80133, Napoli, Italy.
| | - Ida Orefice
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, Via Ammiraglio Ferdinando Acton 55, Giardini Molosiglio, 80133, Napoli, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| | - Giovanna Romano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, Via Ammiraglio Ferdinando Acton 55, Giardini Molosiglio, 80133, Napoli, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| | - Ylenia Carotenuto
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121, Napoli, Italy.
| | - Valeria Di Dato
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn Napoli, Via Ammiraglio Ferdinando Acton 55, Giardini Molosiglio, 80133, Napoli, Italy.
| |
Collapse
|
5
|
Tortorelli G, Oakley CA, Davy SK, van Oppen MJH, McFadden GI. Cell wall proteomic analysis of the cnidarian photosymbionts Breviolum minutum and Cladocopium goreaui. J Eukaryot Microbiol 2021; 69:e12870. [PMID: 34448326 PMCID: PMC9293036 DOI: 10.1111/jeu.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The algal cell wall is an important cellular component that functions in defense, nutrient utilization, signaling, adhesion, and cell–cell recognition—processes important in the cnidarian–dinoflagellate symbiosis. The cell wall of symbiodiniacean dinoflagellates is not well characterized. Here, we present a method to isolate cell walls of Symbiodiniaceae and prepare cell‐wall‐enriched samples for proteomic analysis. Label‐free liquid chromatography–electrospray ionization tandem mass spectrometry was used to explore the surface proteome of two Symbiodiniaceae species from the Great Barrier Reef: Breviolum minutum and Cladocopium goreaui. Transporters, hydrolases, translocases, and proteins involved in cell‐adhesion and protein–protein interactions were identified, but the majority of cell wall proteins had no homologues in public databases. We propose roles for some of these proteins in the cnidarian–dinoflagellate symbiosis. This work provides the first proteomics investigation of cell wall proteins in the Symbiodiniaceae and represents a basis for future explorations of the roles of cell wall proteins in Symbiodiniaceae and other dinoflagellates.
Collapse
Affiliation(s)
- Giada Tortorelli
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
6
|
Lupette J, Benning C. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 2020; 178:15-25. [PMID: 32389760 DOI: 10.1016/j.biochi.2020.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Microalgae are single-cell, photosynthetic organisms whose biodiversity places them at the forefront of biological producers of high-value molecules including lipids and pigments. Some of these organisms particular are capable of synthesizing n-3 very long chain polyunsaturated fatty acids (VLC-PUFAs), known to have beneficial effects on human health. Indeed, VLC-PUFAs are the precursors of many signaling molecules in humans involved in the complexities of inflammatory processes. This mini-review provides an inventory of knowledge on the synthesis of VLC-PUFAs in microalgae and on the diversity of signaling molecules (prostanoids, leukotrienes, SPMs, EFOX, isoprostanoids) that arise in humans from VLC-PUFAs.
Collapse
Affiliation(s)
- Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|