1
|
Ortega-Balleza JL, Vázquez-Jiménez LK, Ortiz-Pérez E, Avalos-Navarro G, Paz-González AD, Lara-Ramírez EE, Rivera G. Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors. Molecules 2024; 29:3944. [PMID: 39203022 PMCID: PMC11356879 DOI: 10.3390/molecules29163944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce β-lactamases, which confer resistance to β-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by β-lactamases, including metallo-β-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine β-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Lenci K. Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México 03940, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Guadalupe Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Mexico;
| | - Alma D. Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Edgar E. Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (J.L.O.-B.); (L.K.V.-J.); (E.O.-P.); (A.D.P.-G.); (E.E.L.-R.)
| |
Collapse
|
2
|
Nahar L, Hagiya H, Gotoh K, Asaduzzaman M, Otsuka F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. J Clin Med 2024; 13:4199. [PMID: 39064239 PMCID: PMC11277577 DOI: 10.3390/jcm13144199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review is to synthesize current scientific data on NDM inhibitors to facilitate the development of future therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022. We employed various generic terms to encompass all the literature ever published on potential NDM inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligibility criteria and were included in our analysis. The fractional inhibitory concentration index was assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds already approved by the Food and Drug Administration (FDA) of the United States. Time-killing curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies, 67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have been applied to human infections. Conclusions: Ongoing research efforts have identified several potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this, we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons.
Collapse
Affiliation(s)
- Lutfun Nahar
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Md Asaduzzaman
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan (M.A.)
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Wang L, Liang Y, Luo P, Huang M, Wan Y. Novel partially reversible NDM-1 inhibitors based on the naturally occurring houttuynin. Bioorg Chem 2024; 147:107328. [PMID: 38583248 DOI: 10.1016/j.bioorg.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Discovering novel NDM-1 inhibitors is an urgent task for treatment of 'superbug' infectious diseases. In this study, we found that naturally occurring houttuynin and its sulfonate derivatives might be effective NDM-1 inhibitors with novel mechanism, i.e. the attribute of partially covalent inhibition of sulfonate derivatives of houttuynin against NDM-1. Primary structure-activity relationship study showed that both the long aliphatic side chain and the warhead of aldehyde group are vital for the efficiency against NDM-1. The homologs with longer chains (SNH-2 to SNH-5) displayed stronger inhibitory activities with IC50 range of 1.1-1.5 μM, while the shorter chain the weaker inhibition. Further synergistic experiments in cell level confirmed that all these 4 compounds (at 32 μg/mL) recovered the antibacterial activity of meropenem (MER) against E. coli BL21/pET15b-blaNDM-1.
Collapse
Affiliation(s)
- Lifang Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yaowen Liang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Pan Luo
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China.
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, PR China
| |
Collapse
|
4
|
Ahmed M, Malhotra SS, Yadav O, Monika, Saini C, Sharma N, Gupta MK, Mohapatra RK, Ansari A. DFT and TDDFT exploration on electronic transitions and bonding aspect of DPA and PTDC ligated transition metal complexes. J Mol Model 2024; 30:122. [PMID: 38570356 DOI: 10.1007/s00894-024-05912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT In this study, we have investigated the structure, reactivity, bonding, and electronic transitions of DPA and PDTC along with their Ni-Zn complexes using DFT/TD-DFT methods. The energy gap between the frontier orbitals was computed to understand the reactivity pattern of the ligands and metal complexes. From the energies of FMO's, the global reactivity descriptors such as electron affinity, ionization potential, hardness (η), softness (S), chemical potential (μ), electronegativity (χ), and electrophilicity index (ω) have been calculated. The complexes show a strong NLO properties due to easily polarization as indicated by the narrow HOMO-LUMO gap. The polarizability and hyperpolarizabilities of the complexes indicate that they are good candidates for NLO materials. Molecular electrostatic potential (MEP) maps identified electrophilic and nucleophilic sites on the surfaces of the complexes. TDDFT and NBO analyses provided insights into electronic transitions, bonding, and stabilizing interactions within the studied complexes. DPA and PDTC exhibited larger HOMO-LUMO gaps and more negative electrostatic potentials compared to their metal complexes suggesting the higher reactivity. Ligands (DPA and PDTC) had absorption spectra in the range of 250 nm to 285 nm while their complexes spanned 250 nm to 870 nm. These bands offer valuable information on electronic transitions, charge transfer and optical behavior. This work enhances our understanding of the electronic structure and optical properties of these complexes. METHODS Gaussian16 program was used for the optimization of all the compounds. B3LYP functional in combination with basis sets, such as LanL2DZ for Zn, Ni and Cu while 6-311G** for other atoms like C, H, O, N, and S was used. Natural bond orbital (NBO) analysis is carried out to find out how the filled orbital of one sub-system interacts with the empty orbital of another sub-system. The ORCA software is used for computing spectral features along with the zeroth order regular approximation method (ZORA) to observe its relativistic effects. TD-DFT study is carried out to calculate the excitation energy by using B3LYP functional.
Collapse
Affiliation(s)
- Mukhtar Ahmed
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Sumit Sahil Malhotra
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Monika
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Charu Saini
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Sharma
- Life Science, Dyal Singh College, University of Delhi, Delhi, 110003, India
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India
| | - Ranjan Kumar Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, 758002, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
5
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|