1
|
Khushi S, Salim AA, Capon RJ. Case Studies in Molecular Network-Guided Marine Biodiscovery. Mar Drugs 2023; 21:413. [PMID: 37504944 PMCID: PMC10381900 DOI: 10.3390/md21070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
In reviewing a selection of recent case studies from our laboratory, we revealed some lessons learned and benefits accrued from the application of mass spectrometry (MS/MS) molecular networking in the field of marine sponge natural products. Molecular networking proved pivotal to our discovery of many new natural products and even new classes of natural product, some of which were opaque to alternate dereplication and prioritization strategies. Case studies included the discovery of: (i) trachycladindoles, an exceptionally rare class of bioactive indole alkaloid previously only known from a single southern Australia sample of Trachycladus laevispirulifer; (ii) dysidealactams, an unprecedented class of sesquiterpene glycinyl-lactam and glycinyl-imide from a Dysidea sp., a sponge genera often discounted as having been exhaustively studied; (iii) cacolides, an unprecedented family of sesterterpene α-methyl-γ-hydroxybutenolides from a Cacospongia sp., all too easily mischaracterized and deprioritized during dereplication as a well-known class of sponge sesterterpene tetronic acids; and (iv) thorectandrins, a new class of indole alkaloid which revealed unexpected insights into the chemical and biological properties of the aplysinopsins, one of the earliest and more extensively reported class of sponge natural products.
Collapse
Affiliation(s)
- Shamsunnahar Khushi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Angela A Salim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
3
|
Prebble DW, Holland DC, Hayton JB, Ferretti F, Jennings LK, Everson J, Xu M, Kiefel MJ, Mellick GD, Carroll AR. α-Synuclein Aggregation Inhibitory Procerolides and Diphenylalkanes from the Ascidian Polycarpa procera. JOURNAL OF NATURAL PRODUCTS 2023; 86:533-540. [PMID: 36787528 DOI: 10.1021/acs.jnatprod.2c01140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of the neuronal protein α-synuclein (α-syn) is intrinsically linked to the development and progression of Parkinson's disease (PD). Recently we screened the MeOH extracts from 283 marine invertebrates for α-syn binding activity using an affinity mass spectrometry (MS) binding assay and found that the extract of the ascidian Polycarpa procera displayed activity. A subsequent bioassay-guided purification led to the isolation of one new α-syn aggregation inhibitory butenolide procerolide E (3) and one new α-syn aggregation inhibitory diphenylbutyrate methyl procerolate A (5). Herein we report the structure elucidation of procerolide E (3) and methylprocerolate A (5) and α-syn aggregation inhibitory activity of procerolides C-E (1-3), methyl procerolate A (5) and procerone A (4). We also report the α-syn binding activity of 3-bromo-4-methoxyphenylacetamide (6) and a synthetic butenolide library, which has allowed us to determine α-syn aggregation inhibitory structure-activity relationships for this class of compounds.
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Francesca Ferretti
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Laurence K Jennings
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Jack Everson
- Institute for Glycomics, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Milton J Kiefel
- Institute for Glycomics, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Holland DC, Prebble DW, Er S, Hayton JB, Robertson LP, Avery VM, Domanskyi A, Kiefel MJ, Hooper JNA, Carroll AR. α-Synuclein Aggregation Inhibitory Prunolides and a Dibrominated β-Carboline Sulfamate from the Ascidian Synoicum prunum. JOURNAL OF NATURAL PRODUCTS 2022; 85:441-452. [PMID: 35050597 DOI: 10.1021/acs.jnatprod.1c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seven new polyaromatic bis-spiroketal-containing butenolides, the prunolides D-I (4-9) and cis-prunolide C (10), a new dibrominated β-carboline sulfamate named pityriacitrin C (11), alongside the known prunolides A-C (1-3) were isolated from the Australian colonial ascidian Synoicum prunum. The prunolides D-G (4-7) represent the first asymmetrically brominated prunolides, while cis-prunolide C (10) is the first reported with a cis-configuration about the prunolide's bis-spiroketal core. The prunolides displayed binding activities with the Parkinson's disease-implicated amyloid protein α-synuclein in a mass spectrometry binding assay, while the prunolides (1-5 and 10) were found to significantly inhibit the aggregation (>89.0%) of α-synuclein in a ThT amyloid dye assay. The prunolides A-C (1-3) were also tested for inhibition of pSyn aggregate formation in a primary embryonic mouse midbrain dopamine neuron model with prunolide B (2) displaying statistically significant inhibitory activity at 0.5 μM. The antiplasmodial and antibacterial activities of the isolates were also examined with prunolide C (3) displaying only weak activity against the 3D7 parasite strain of Plasmodium falciparum. Our findings reported herein suggest that the prunolides could provide a novel scaffold for the exploration of future therapeutics aimed at inhibiting amyloid protein aggregation and the treatment of numerous neurodegenerative diseases.
Collapse
Affiliation(s)
- Darren C Holland
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Dale W Prebble
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Safak Er
- HiLIFE, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Joshua B Hayton
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Luke P Robertson
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Vicky M Avery
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Andrii Domanskyi
- HiLIFE, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Milton J Kiefel
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Institute for Glycomics, Griffith University, Southport, Queensland 4221, Australia
| | - John N A Hooper
- Queensland Museum, South Brisbane BC, Queensland 4101, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
6
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
7
|
Effect of Selected Silyl Groups on the Anticancer Activity of 3,4-Dibromo-5-Hydroxy-Furan-2(5 H)-One Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14111079. [PMID: 34832861 PMCID: PMC8620685 DOI: 10.3390/ph14111079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/01/2023] Open
Abstract
The pharmacological effects of carbon to silicon bioisosteric replacements have been widely explored in drug design and medicinal chemistry. Here, we present a systematic investigation of the impact of different silyl groups on the anticancer activity of mucobromic acid (MBA) bearing furan-2(5H)-one core. We describe a comprehensive characterization of obtained compounds with respect to their anticancer potency and selectivity towards cancer cells. All four novel compounds exert stronger antiproliferative activity than MBA. Moreover, 3b induce apoptosis in colon cancer cell lines. A detailed investigation of the mechanism of action revealed that 3b activity stems from the down-regulation of survivin and the activation of caspase-3. Furthermore, compound 3b attenuates the clonogenic potential of HCT-116 cells. Interestingly, we also found that depending on the type of the silyl group, compound selectivity towards cancer cells could be precisely controlled. Collectively, we demonstrated the utility of silyl groups for adjusting both the potency and selectivity of silicon-containing compounds. These data reveal a link between the types of silyl group and compound potency, which could have bearings for the design of novel silicon-based anticancer drugs.
Collapse
|
8
|
Vries J, Assmann M, Janneschütz J, Krauß J, Gudzuhn M, Stanelle‐Bertram S, Gabriel G, Streit WR, Schützenmeister N. Synthesis of Natural Rubrolides B, I, K, L, M, O and Analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Vries
- Department of Chemistry Institute of Pharmacy Universität Hamburg Bundesstrasse 45 20146 Hamburg Germany
| | - Maik Assmann
- Department of Chemistry Institute of Pharmacy Universität Hamburg Bundesstrasse 45 20146 Hamburg Germany
| | - Jasmin Janneschütz
- Department of Chemistry Institute of Pharmacy Universität Hamburg Bundesstrasse 45 20146 Hamburg Germany
| | - Judith Krauß
- Department of Chemistry Institute of Pharmacy Universität Hamburg Bundesstrasse 45 20146 Hamburg Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology Universität Hamburg Ohnhorststrasse 18 22609 Hamburg Germany
| | - Stephanie Stanelle‐Bertram
- Heinrich-Pette-Institute Leibniz Institute for Experimental Virology Martinistrasse 52 20251 Hamburg Germany
| | - Gülsah Gabriel
- Heinrich-Pette-Institute Leibniz Institute for Experimental Virology Martinistrasse 52 20251 Hamburg Germany
- Institute for Virology University for Veterinary Medicine Hannover Buenteweg 17 30559 Hannover Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology Universität Hamburg Ohnhorststrasse 18 22609 Hamburg Germany
| | - Nina Schützenmeister
- Department of Pharmaceutical Chemistry University of Vienna Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
9
|
Bracegirdle J, Stevenson LJ, Sharrock AV, Page MJ, Vorster JA, Owen JG, Ackerley DF, Keyzers RA. Hydrated Rubrolides from the New Zealand Tunicate Synoicum kuranui. JOURNAL OF NATURAL PRODUCTS 2021; 84:544-547. [PMID: 33496582 DOI: 10.1021/acs.jnatprod.0c01248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
LCMS analysis of an extract of the New Zealand tunicate Synoicum kuranui showed evidence for numerous new rubrolides. Following a mass spectrometry-guided isolation procedure, new hydrated rubrolides V and W (5 and 6), along with previously reported rubrolide G (3), were isolated and characterized using MS and NMR. The anti-bacterial and cell cytotoxic activity of the compounds were compared to the potent anti-MRSA compound rubrolide A; hydration across the C-5/C-6 bond was shown to abrogate antibacterial activity.
Collapse
Affiliation(s)
- Joe Bracegirdle
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Luke J Stevenson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Abigail V Sharrock
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Michael J Page
- National Institute of Water & Atmospheric Research (NIWA), P.O. Box 893, Nelson 7010, New Zealand
| | | | - Jeremy G Owen
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Robert A Keyzers
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|