1
|
Ratibou Z, Ebou AET, Bich C, Saintmont F, Valette G, Cazals G, Koua DK, Inguimbert N, Dutertre S. Proteo-Transcriptomic Analysis of the Venom Gland of the Cone Snail Cylinder canonicus Reveals the Origin of the Predatory-Evoked Venom. Toxins (Basel) 2025; 17:119. [PMID: 40137892 PMCID: PMC11946857 DOI: 10.3390/toxins17030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Cone snails are carnivorous marine predators that prey on mollusks, worms, or fish. They purposefully inject a highly diversified and peptide-rich venom, which can vary according to the predatory or defensive intended use. Previous studies have shown some correlations between the predation- and defense-evoked venoms and specific sections of the venom gland. In this study, we focus on the characterization of the venom of Cylinder canonicus, a molluscivorous species collected from Mayotte Island. Integrated proteomics and transcriptomics studies allowed for the identification of 108 conotoxin sequences from 24 gene superfamilies, with the most represented sequences belonging to the O1, O2, M, and conkunitzin superfamilies. A comparison of the predatory injected venom and the distal, central, and proximal sections of the venom duct suggests mostly distal origin. Identified conotoxins will contribute to a better understanding of venom-ecology relationships in cone snails and provide a novel resource for potential drug discovery.
Collapse
Affiliation(s)
- Zahrmina Ratibou
- CRIOBE, USR 3278—EPHE-CNRS-UPVD, Université de Perpignan via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | - Anicet E. T. Ebou
- ERBB, LaMBB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, BP 1093, Côte d’Ivoire; (A.E.T.E.); (D.K.K.)
| | - Claudia Bich
- IBMM, Université de Montpellier CNRS, ENSCM, 34095 Montpellier, France; (C.B.); (G.V.); (G.C.)
| | - Fabrice Saintmont
- IBMM, Université de Montpellier CNRS, ENSCM, 34095 Montpellier, France; (C.B.); (G.V.); (G.C.)
| | - Gilles Valette
- IBMM, Université de Montpellier CNRS, ENSCM, 34095 Montpellier, France; (C.B.); (G.V.); (G.C.)
| | - Guillaume Cazals
- IBMM, Université de Montpellier CNRS, ENSCM, 34095 Montpellier, France; (C.B.); (G.V.); (G.C.)
| | - Dominique K. Koua
- ERBB, LaMBB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, BP 1093, Côte d’Ivoire; (A.E.T.E.); (D.K.K.)
| | - Nicolas Inguimbert
- CRIOBE, USR 3278—EPHE-CNRS-UPVD, Université de Perpignan via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France;
| | - Sébastien Dutertre
- IBMM, Université de Montpellier CNRS, ENSCM, 34095 Montpellier, France; (C.B.); (G.V.); (G.C.)
| |
Collapse
|
2
|
Li R, Hasan MM, Wang D. In Silico Conotoxin Studies: Progress and Prospects. Molecules 2024; 29:6061. [PMID: 39770149 PMCID: PMC11677113 DOI: 10.3390/molecules29246061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cone snails of the genus Conus have evolved to produce structurally distinct and functionally diverse venom peptides for defensive and predatory purposes. This nature-devised delicacy enlightened drug discovery and for decades, the bioactive cone snail venom peptides, known as conotoxins, have been widely explored for their therapeutic potential, yet we know very little about them. With the augmentation of computational algorithms from the realms of bioinformatics and machine learning, in silico strategies have made substantial contributions to facilitate conotoxin studies although still with certain limitations. In this review, we made a bibliometric analysis of in silico conotoxin studies from 2004 to 2024 and then discussed in silico strategies to not only efficiently classify conotoxin superfamilies but also speed up drug discovery from conotoxins, reveal binding modes of known conotoxin-ion channel interactions at a microscopic level and relate the mechanisms of ion channel modulation to its underlying molecular structure. We summarized the current progress of studies in this field and gave an outlook on prospects.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| | - Md. Mahadhi Hasan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
3
|
Rojas-Palomino J, Gómez-Restrepo A, Salinas-Restrepo C, Segura C, Giraldo MA, Calderón JC. Electrophysiological evaluation of the effect of peptide toxins on voltage-gated ion channels: a scoping review on theoretical and methodological aspects with focus on the Central and South American experience. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230048. [PMID: 39263598 PMCID: PMC11389830 DOI: 10.1590/1678-9199-jvatitd-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
The effect of peptide toxins on voltage-gated ion channels can be reliably assessed using electrophysiological assays, such as the patch-clamp technique. However, much of the toxinological research done in Central and South America aims at purifying and characterizing biochemical properties of the toxins of vegetal or animal origin, lacking electrophysiological approaches. This may happen due to technical and infrastructure limitations or because researchers are unfamiliar with the techniques and cellular models that can be used to gain information about the effect of a molecule on ion channels. Given the potential interest of many research groups in the highly biodiverse region of Central and South America, we reviewed the most relevant conceptual and methodological developments required to implement the evaluation of the effect of peptide toxins on mammalian voltage-gated ion channels using patch-clamp. For that, we searched MEDLINE/PubMed and SciELO databases with different combinations of these descriptors: "electrophysiology", "patch-clamp techniques", "Ca2+ channels", "K+ channels", "cnidarian venoms", "cone snail venoms", "scorpion venoms", "spider venoms", "snake venoms", "cardiac myocytes", "dorsal root ganglia", and summarized the literature as a scoping review. First, we present the basics and recent advances in mammalian voltage-gated ion channel's structure and function and update the most important animal sources of channel-modulating toxins (e.g. cnidarian and cone snails, scorpions, spiders, and snakes), highlighting the properties of toxins electrophysiologically characterized in Central and South America. Finally, we describe the local experience in implementing the patch-clamp technique using two models of excitable cells, as well as the participation in characterizing new modulators of ion channels derived from the venom of a local spider, a toxins' source less studied with electrophysiological techniques. Fostering the implementation of electrophysiological methods in more laboratories in the region will strengthen our capabilities in many fields, such as toxinology, toxicology, pharmacology, natural products, biophysics, biomedicine, and bioengineering.
Collapse
Affiliation(s)
| | - Alejandro Gómez-Restrepo
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of
Medicine, University of Antioquia, Medellín, Colombia
| | - Cristian Salinas-Restrepo
- Toxinology, Therapeutic and Food Alternatives Research Group,
Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín,
Colombia
| | - César Segura
- Malaria Group, Faculty of Medicine, University of Antioquia,
Medellín, Colombia
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia,
Medellín, Colombia
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of
Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
McCarthy S, Gonen S. δ-Conotoxin Structure Prediction and Analysis through Large-Scale Comparative and Deep Learning Modeling Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404786. [PMID: 39033537 PMCID: PMC11425241 DOI: 10.1002/advs.202404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Indexed: 07/23/2024]
Abstract
The δ-conotoxins, a class of peptides produced in the venom of cone snails, are of interest due to their ability to inhibit the inactivation of voltage-gated sodium channels causing paralysis and other neurological responses, but difficulties in their isolation and synthesis have made structural characterization challenging. Taking advantage of recent breakthroughs in computational algorithms for structure prediction that have made modeling especially useful when experimental data is sparse, this work uses both the deep-learning-based algorithm AlphaFold and comparative modeling method RosettaCM to model and analyze 18 previously uncharacterized δ-conotoxins derived from piscivorous, vermivorous, and molluscivorous cone snails. The models provide useful insights into the structural aspects of these peptides and suggest features likely to be significant in influencing their binding and different pharmacological activities against their targets, with implications for drug development. Additionally, the described protocol provides a roadmap for the modeling of similar disulfide-rich peptides by these complementary methods.
Collapse
Affiliation(s)
- Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
5
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|