1
|
Modica MV, Leone S, Gerdol M, Greco S, Aurelle D, Oliverio M, Fassio G, El Koulali K, Barrachina C, Dutertre S. The proteotranscriptomic characterization of venom in the white seafan Eunicella singularis elucidates the evolution of Octocorallia arsenal. Open Biol 2025; 15:250015. [PMID: 40068811 PMCID: PMC11896702 DOI: 10.1098/rsob.250015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
All the members of the phylum Cnidaria are characterized by the production of venom in specialized structures, the nematocysts. Venom of jellyfish (Medusozoa) and sea anemones (Anthozoa) has been investigated since the 1970s, revealing a remarkable molecular diversity. Specifically, sea anemones harbour a rich repertoire of neurotoxic peptides, some of which have been developed in drug leads. However, venoms of the vast majority of Anthozoa species remain uncharacterized, particularly in the class Octocorallia. To fill this gap, we applied a proteo-transcriptomic approach to investigate venom composition in Eunicella singularis, a gorgonian species common in Mediterranean hard-bottom benthic communities. Our results highlighted the peculiarities of the venom of E. singularis with respect to sea anemones, which is reflected in the presence of several toxins with novel folds, worthy of functional characterization. A comparative genomic survey across the octocoral radiation allowed us to generalize these findings and provided insights into the evolutionary history, molecular diversification patterns and putative adaptive roles of venom toxins. A comparison of whole-body and nematocyst proteomes revealed the presence of different cytolytic toxins inside and outside the nematocysts. Two instances of differential maturation patterns of toxin precursors were also identified, highlighting the intricate regulatory pathways underlying toxin expression.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Didier Aurelle
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Marco Oliverio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | | | - Célia Barrachina
- Platform MGX, IGF, University of Montpellier, Montpellier, France
| | | |
Collapse
|
2
|
Choudhary C, Kishore D, Meghwanshi KK, Verma V, Shukla JN. A sex-specific homologue of waprin is essential for embryonic development in the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2025; 34:111-121. [PMID: 39167359 DOI: 10.1111/imb.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Waprin, a WAP (Whey acidic protein) domain-containing extracellular secretory protein, is widely known for its antibacterial properties. In this study, a waprin homologue (Tc_wapF) expressing in a female-specific manner was identified in Tribolium castaneum, through the analysis of sex-specific transcriptomes. Developmental- and tissue-specific profiling revealed the widespread expression of Tc_wapF in adult female tissues, particularly in the ovary, gut and fatbody. This female-specific expression of Tc_wapF is not regulated by the classical sex-determination cascade of T. castaneum, as we fail to get any attenuation in Tc_wapF transcript levels in Tcdsx and Tctra (key players of sex determination cascade of T. castaneum) knockdown females. RNA interference-mediated knockdown of Tc_wapF in females led to the non-hatching of eggs laid by these females, suggesting the crucial role of Tc_wapF in the embryonic development in T. castaneum. This is the first report on the identification of a sex-specific waprin homologue in an insect and its involvement in embryonic development. Future investigations on the functional conservation of insect waprins and their mechanistic role in embryonic development can be exploited for improving pest management strategies.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Divyanshu Kishore
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vivek Verma
- Gujarat Biotechnology University, Gandhinagar, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
3
|
Shikina S, Yoshioka Y, Chiu YL, Uchida T, Chen E, Cheng YC, Lin TC, Chu YL, Kanda M, Kawamitsu M, Fujie M, Takeuchi T, Zayasu Y, Satoh N, Shinzato C. Genome and tissue-specific transcriptomes of the large-polyp coral, Fimbriaphyllia (Euphyllia) ancora: a recipe for a coral polyp. Commun Biol 2024; 7:899. [PMID: 39048698 PMCID: PMC11269664 DOI: 10.1038/s42003-024-06544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Coral polyps are composed of four tissues; however, their characteristics are largely unexplored. Here we report biological characteristics of tentacles (Te), mesenterial filaments (Me), body wall (Bo), and mouth with pharynx (MP), using comparative genomic, morpho-histological, and transcriptomic analyses of the large-polyp coral, Fimbriaphyllia ancora. A draft F. ancora genome assembly of 434 Mbp was created. Morpho-histological and transcriptomic characterization of the four tissues showed that they have distinct differences in structure, primary cellular composition, and transcriptional profiles. Tissue-specific, highly expressed genes (HEGs) of Te are related to biological defense, predation, and coral-algal symbiosis. Me expresses multiple digestive enzymes, whereas Bo expresses innate immunity and biomineralization-related molecules. Many receptors for neuropeptides and neurotransmitters are expressed in MP. This dataset and new insights into tissue functions will facilitate a deeper understanding of symbiotic biology, immunology, biomineralization, digestive biology, and neurobiology in corals.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yi-Ling Chiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Emma Chen
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yin-Chu Cheng
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tzu-Chieh Lin
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ling Chu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Miyuki Kanda
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
4
|
Salabi F, Jafari H. Whole transcriptome sequencing reveals the activity of the PLA2 family members in Androctonus crassicauda (Scorpionida: Buthidae) venom gland. FASEB J 2024; 38:e23658. [PMID: 38742809 DOI: 10.1096/fj.202400178rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Phospholipase A2 is the most abundant venom gland enzyme, whose activity leads to the activation of the inflammatory response by accumulating lipid mediators. This study aimed to identify, classify, and investigate the properties of venom PLA2 isoforms. Then, the present findings were confirmed by chemically measuring the activity of PLA2. The sequences representing PLA2 annotation were extracted from the Androctonus crassicauda transcriptome dataset using BLAS searches against the local PLA2 database. We found several cDNA sequences of PLA2 classified and named by conducting multiple searches as platelet-activating factor acetylhydrolases, calcium-dependent PLA2s, calcium-independent PLA2s, and secreted PLA2s. The largest and smallest isoforms of these proteins range between approximately 70.34 kDa (iPLA2) and 17.75 kDa (cPLA2). Among sPLA2 isoforms, sPLA2GXIIA and sPLA2G3 with ORF encoding 169 and 299 amino acids are the smallest and largest secreted PLA2, respectively. These results collectively suggested that A. crassicauda venom has PLA2 activity, and the members of this protein family may have important biological roles in lipid metabolism. This study also revealed the interaction between members of PLA2s in the PPI network. The results of this study would greatly help with the classification, evolutionary relationships, and interactions between PLA2 family proteins in the gene network.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Hedieh Jafari
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
5
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
6
|
Hérnández-Elizárraga VH, Vega-Tamayo JE, Olguín-López N, Ibarra-Alvarado C, Rojas-Molina A. Transcriptomic and proteomic analyses reveal the first occurrence of diverse toxin groups in Millepora alcicornis. J Proteomics 2023; 288:104984. [PMID: 37536522 DOI: 10.1016/j.jprot.2023.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Millepora alcicornis is a reef-forming cnidarian widely distributed in the Mexican Caribbean. Millepora species or "fire corals" inflict a painful stinging reaction in humans when touched. Even though hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, there are few reports regarding the diversity of toxins synthesized by fire corals. Here, based on transcriptomic analysis of M. alcicornis, several predicted proteins that show amino acid sequence similarity to toxins were identified, including neurotoxins, metalloproteases, hemostasis-impairing toxins, serin proteases, cysteine-rich venom proteins, phospholipases, complement system-impairing toxins, phosphodiesterases, pore-forming toxins, and L-aminoacid oxidases. The soluble nematocyst proteome of this organism was shown to induce hemolytic, proteolytic, and phospholipase A2 effects by gel zymography. Protein bands or spots on 1D- and 2D-PAGE gels corresponding to zones of hemolytic and enzymatic activities were excised, subjected to in-gel digestion with trypsin, and analyzed by mass spectrometry. These proteins exhibited sequence homology to PLA2s, metalloproteinases, pore-forming toxins, and neurotoxins, such as actitoxins and CrTX-A. The complex array of venom-related transcripts that were identified in M. alcicornis, some of which are first reported in "fire corals", provide novel insight into the structural richness of Cnidarian toxins and their distribution among species. SIGNIFICANCE: Marine organisms are a promising source of bioactive compounds with valuable contributions in diverse fields such as human health, pharmaceuticals, and industrial application. Currently, not much attention has been paid to the study of fire corals, which possess a variety of molecules that exhibit diverse toxic effects and therefore have great pharmaceutical and biotechnological potential. The isolation and identification of novel marine-derived toxins by classical approaches are time-consuming and have low yields. Thus, next-generation strategies, like base-'omics technologies, are essential for the high-throughput characterization of venom compounds such as those synthesized by fire corals. This study moves the field forward because it provides new insights regarding the first occurrence of diverse toxin groups in Millepora alcicornis. The findings presented here will contribute to the current understanding of the mechanisms of action of Millepora toxins. This research also reveals important information related to the potential role of toxins in the defense and capture of prey mechanisms and for designing appropriate treatments for fire coral envenomation. Moreover, due to the lack of information on the taxonomic identification of Millepora, the insights presented here can advise the taxonomic classification of the species of this genus.
Collapse
Affiliation(s)
- Víctor Hugo Hérnández-Elizárraga
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; University of Minnesota Genomics Center, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Norma Olguín-López
- Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico; División Química y Energías Renovables, Universidad Tecnológica de San Juan del Río. Av La Palma No 125 Vista Hermosa, 76800 San Juan del Río, Qro, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Qro, Mexico.
| |
Collapse
|
7
|
Chen Q, Liang Z, Yue Q, Wang X, Siu SWI, Pui-Man Hoi M, Lee SMY. A Neuropeptide Y/F-like Polypeptide Derived from the Transcriptome of Turbinaria peltata Suppresses LPS-Induced Astrocytic Inflammation. JOURNAL OF NATURAL PRODUCTS 2022; 85:1569-1580. [PMID: 35694811 DOI: 10.1021/acs.jnatprod.2c00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75-3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiufen Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
8
|
Venom system variation and the division of labor in the colonial hydrozoan Hydractinia symbiolongicarpus. Toxicon X 2022; 14:100113. [PMID: 35287376 PMCID: PMC8917316 DOI: 10.1016/j.toxcx.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cnidarians (jellyfish, hydroids, sea anemones, and corals) possess a unique method for venom production, maintenance, and deployment through a decentralized system composed of different types of venom-filled stinging structures called nematocysts. In many species, nematocyst types are distributed heterogeneously across functionally distinct tissues. This has led to a prediction that different nematocyst types contain specific venom components. The colonial hydrozoan, Hydractinia symbiolongicarpus, is an ideal system to study the functional distribution of nematocyst types and their venoms, given that they display a division of labor through functionally distinct polyps within the colony. Here, we characterized the composition and distribution of nematocysts (cnidome) in the different polyp types and show that the feeding polyp (gastrozooid) has a distinct cnidome compared to the reproductive (gonozooid) and predatory polyp (dactylozooid). We generated a nematocyst-specific reporter line to track nematocyst development (nematogenesis) in H. symbiolongicarpus, and were able to confirm that nematogenesis primarily occurs in the mid-region of the gastrozooid and throughout stolons (tubes of epithelia that connect the polyps in the colony). This reporter line enabled us to isolate a nematocyst-specific lineage of cells for de novo transcriptome assembly, annotate venom-like genes (VLGs) and determine differential expression (DE) across polyp types. We show that a majority of VLGs are upregulated in gastrozooids, consistent with it being the primary site of active nematogenesis. However, despite gastrozooids producing more nematocysts, we found a number of VLGs significantly upregulated in dactylozooids, suggesting that these VLGs may be important for prey-capture. Our transgenic Hydractinia reporter line provides an opportunity to explore the complex interplay between venom composition, nematocyst diversity, and ecological partitioning in a colonial hydrozoan that displays a division of labor. Functionally specific polyp types in Hydractinia symbiolongicarpus have distinct cnidomes. We present a nematocyst-targeted transgenic line for H. symbiolongicarpus, showcasing active areas of nematogenesis. 105 venom-like genes (VLGs) were annotated from an assembled nematocyst-enriched transcriptome. Several VLGs were significantly upregulated in feeding polyps, consistent with being a site of active nematogenesis. Differential expression analysis suggests that different polyp types express distinct combinations of VLGs.
Collapse
|
9
|
Chen H, Siu SWI, Wong CTT, Qiu J, Cheung AKK, Lee SMY. Anti-epileptic Kunitz-like peptides discovered in the branching coral Acropora digitifera through transcriptomic analysis. Arch Toxicol 2022; 96:2589-2608. [PMID: 35604417 DOI: 10.1007/s00204-022-03311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1β induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.
Collapse
Affiliation(s)
- Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianwen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Alex Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
10
|
Verdes A, Taboada S, Hamilton BR, Undheim EAB, Sonoda GG, Andrade SCS, Morato E, Isabel Marina A, Cárdenas CA, Riesgo A. Evolution, expression patterns and distribution of novel ribbon worm predatory and defensive toxins. Mol Biol Evol 2022; 39:6580756. [PMID: 35512366 PMCID: PMC9132205 DOI: 10.1093/molbev/msac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribbon worms are active predators that use an eversible proboscis to inject venom into their prey and defend themselves with toxic epidermal secretions. Previous work on nemertean venom has largely focused on just a few species and has not investigated the different predatory and defensive secretions in detail. Consequently, our understanding of the composition and evolution of ribbon worm venoms is still very limited. Here, we present a comparative study of nemertean venom combining RNA-seq differential gene expression analyses of venom-producing tissues, tandem mass spectrometry-based proteomics of toxic secretions, and mass spectrometry imaging of proboscis sections, to shed light onto the composition and evolution of predatory and defensive toxic secretions in Antarctonemertes valida. Our analyses reveal a wide diversity of putative defensive and predatory toxins with tissue-specific gene expression patterns and restricted distributions to the mucus and proboscis proteomes respectively, suggesting that ribbon worms produce distinct toxin cocktails for predation and defense. Our results also highlight the presence of numerous lineage-specific toxins, indicating that venom evolution is highly divergent across nemerteans, producing toxin cocktails that might be finely tuned to subdue different prey. Our data also suggest that the hoplonemertean proboscis is a highly specialized predatory organ that seems to be involved in a variety of biological functions besides predation, including secretion and sensory perception. Overall, our results advance our knowledge into the diversity and evolution of nemertean venoms and highlight the importance of combining different types of data to characterize toxin composition in understudied venomous organisms.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departament of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel G Sonoda
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Sonia C S Andrade
- Departmento de Genética e Biología Evolutiva, University of Sao Paulo, Sao Paulo, Brazil
| | - Esperanza Morato
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel Marina
- CBMSO Protein Chemistry Facility, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN), CSIC, Madrid, Spain.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
11
|
New Insights into the Toxin Diversity and Antimicrobial Activity of the “Fire Coral” Millepora complanata. Toxins (Basel) 2022; 14:toxins14030206. [PMID: 35324703 PMCID: PMC8954376 DOI: 10.3390/toxins14030206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
To date, few studies have been carried out aimed at characterizing the toxins synthesized by hydrocorals of the genus Millepora. The purpose of this study was to explore the toxin diversity and antibacterial activity of the “fire coral” M. complanata using a transcriptomic data mining approach. In addition, the cytolytic and antibacterial activities of the M. complanata nematocyst proteome were experimentally confirmed. Cytolysins were predicted from the transcriptome by comparing against the Animal Toxin Annotation Project database, resulting in 190 putative toxins, including metalloproteases, hemostasis-impairing toxins, phospholipases, among others. The M. complanata nematocyst proteome was analyzed by 1D and 2D electrophoresis and zymography. The zymograms showed different zones of cytolytic activity: two zones of hemolysis at ~25 and ~205 kDa, two regions corresponding to phospholipase A2 (PLA2) activity around 6 and 25 kDa, and a proteolytic zone was observed between 50 and 205 kDa. The hemolytic activity of the proteome was inhibited in the presence of PLA2 and proteases inhibitors, suggesting that PLA2s, trypsin, chymotrypsin, serine-proteases, and matrix metalloproteases are responsible for the hemolysis. On the other hand, antimicrobial peptide sequences were retrieved from their transcripts with the amPEPpy software. This analysis revealed the presence of homologs to SK84, cgUbiquitin, Ubiquicidin, TroTbeta4, SPINK9-v1, and Histone-related antimicrobials in the transcriptome of this cnidarian. Finally, by employing disk diffusion and microdilution assays, we found that the nematocyst peptidome of M. complanata showed inhibitory activity against both Gram-positive and Gram-negative bacteria including S. enteritidis, P. perfectomarina, E. coli, and C. xerosis, among others. This is the first transcriptomic data mining analysis to explore the diversity of the toxins synthesized by an organism of the genus Millepora. Undoubtedly, this work provides information that will broaden our general understanding of the structural richness of cnidarian toxins.
Collapse
|
12
|
Americus B, Hams N, Klompen AML, Alama-Bermejo G, Lotan T, Bartholomew JL, Atkinson SD. The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection. PeerJ 2022; 9:e12606. [PMID: 35003924 PMCID: PMC8684318 DOI: 10.7717/peerj.12606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections.
Collapse
Affiliation(s)
- Benjamin Americus
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Nicole Hams
- Columbia River Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Vancouver, Washington, United States of America
| | - Anna M L Klompen
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gema Alama-Bermejo
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
13
|
Tentacle Morphological Variation Coincides with Differential Expression of Toxins in Sea Anemones. Toxins (Basel) 2021; 13:toxins13070452. [PMID: 34209745 PMCID: PMC8310139 DOI: 10.3390/toxins13070452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Phylum Cnidaria is an ancient venomous group defined by the presence of cnidae, specialised organelles that serve as venom delivery systems. The distribution of cnidae across the body plan is linked to regionalisation of venom production, with tissue-specific venom composition observed in multiple actiniarian species. In this study, we assess whether morphological variants of tentacles are associated with distinct toxin expression profiles and investigate the functional significance of specialised tentacular structures. Using five sea anemone species, we analysed differential expression of toxin-like transcripts and found that expression levels differ significantly across tentacular structures when substantial morphological variation is present. Therefore, the differential expression of toxin genes is associated with morphological variation of tentacular structures in a tissue-specific manner. Furthermore, the unique toxin profile of spherical tentacular structures in families Aliciidae and Thalassianthidae indicate that vesicles and nematospheres may function to protect branched structures that host a large number of photosynthetic symbionts. Thus, hosting zooxanthellae may account for the tentacle-specific toxin expression profiles observed in the current study. Overall, specialised tentacular structures serve unique ecological roles and, in order to fulfil their functions, they possess distinct venom cocktails.
Collapse
|
14
|
Klompen AML, Kayal E, Collins AG, Cartwright P. Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa). Genome Biol Evol 2021; 13:6248095. [PMID: 33892512 PMCID: PMC8214413 DOI: 10.1093/gbe/evab081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore-forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs. Although our analyses detected broad purifying selection across JFTs, we found that a subset of cubozoan JFT-1 sequences are influenced by gene-wide episodic positive selection compared with homologous toxins from other taxonomic groups. This suggests that duplication followed by neofunctionalization or subfunctionalization as a potential mechanism for the highly potent venom in cubozoans. Additionally, published RNA-seq data from several medusozoan species indicate that JFTs are differentially expressed, spatially and temporally, between functionally distinct tissues. Overall, our findings suggest a complex evolutionary history of JFTs involving duplication and selection that may have led to functional diversification, including variability in toxin potency and specificity.
Collapse
Affiliation(s)
- Anna M L Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
| | - Ehsan Kayal
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Allen G Collins
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,National Systematics Laboratory of NOAA's Fisheries Service, Silver Spring, Maryland, USA
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
| |
Collapse
|