1
|
Aguilar-Ramírez E, Rivera-Chávez J, Miranda-Rosas MY, Martínez-Otero D. DMSO enhances the biosynthesis of epoxyquinols in Pestalotiopsis sp. (strain IQ-011) and yields new [4 + 2] cycloaddition dimers. Org Biomol Chem 2025; 23:4525-4536. [PMID: 40232401 DOI: 10.1039/d5ob00115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Pestalotiopsis sp. (strain IQ-011) produces cuautepestalorin (10), a 7,8-dihydrochromene-oxoisochromane adduct featuring a spiro-polycyclic (6/6/6/6/6/6) ring system. Additionally, it yields its proposed biosynthetic precursors: cytosporin M (1) and oxopestalochromane (11) when cultured under standard conditions (fermentation in solid media). Following an OSMAC approach guided by metabolomic studies (PCA and molecular networks), it was established that the epigenetic modulator DMSO dramatically increases the production of 1 up to 50 times according to feature-based molecular networking (FBMN) analysis, and triggers the production of other derivatives from the epoxyquinol family. Chemo-targeted isolation resulted in the discovery of four new compounds: 19-hydroxycytosporin M (2) and three [4 + 2] cycloaddition products: ent-eutyscoparol J (4), ent-pestaloquinol A (6) and ent-pestaloquinol B (8). The structures of all isolates were established based on spectroscopic, spectrometric, chiroptical, and X-ray diffraction analyses. This study demonstrates the potential of combining metabolomic tools with DMSO as an epigenetic modulator to enhance fungal metabolite diversity and highlights the importance of chiroptical methods for accurate compound identification.
Collapse
Affiliation(s)
- Enrique Aguilar-Ramírez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - José Rivera-Chávez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Mario Yair Miranda-Rosas
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Diego Martínez-Otero
- Joint Research Center for Sustainable Chemistry UAEM-UNAM, Toluca, 50200, Mexico
| |
Collapse
|
2
|
Chen MT, Chen HY, Luo YF, Zhou J, Yang JJ, Jiang ZP, Huang L. Highly Conjugated Ergosterols With Anti-Influenza Virus Activity From the Marine-Derived Fungus Eutypella Sp. F0219. Chem Biodivers 2025; 22:e202402465. [PMID: 39581859 DOI: 10.1002/cbdv.202402465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
One rare 15-nor-cadinane sesquiterpenoid (1), one new chromene amide derivative (2), and one new highly conjugated ergosterol steroid (3), along with three known compounds (4-6), were isolated from the marine-derived fungus Eutypella sp. F0219. Their chemical structures, including absolute configurations, were established by HR-ESIMS, extensive 1D and 2D NMR investigations, and electronic circular dichroism (ECD) calculations. All compounds were evaluated for their anti-influenza A virus and anti-influenza B virus activities against the A/PR/8/34 (H1N1), ZX1109 (H1N1, oseltamivir-resistant virus), HK68 (H3N2), and B/Florida/78/2015 strains. Compounds 3 and 4 showed significant antiviral activities against those four virus strains with EC50 values ranging from 2.07 to 11.3 µM. Most notably, compound 3 exhibited potent anti-influenza B virus activity against B/Florida/78/2015 strain with EC50 value of 2.27 ± 1.76 µM, versus the postive control (oseltamivir, EC50 = 7.14 ± 1.94 µM).
Collapse
Affiliation(s)
- Meng-Ting Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Han-Yu Chen
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Yan-Fang Luo
- Guangdong Corps Hospital, Chinese People's Armed Police Force, Guangzhou, China
| | - Jing Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Jing-Jing Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Ji R, Zha X, Zhou S. Marine Fungi: A Prosperous Source of Novel Bioactive Natural Products. Curr Med Chem 2025; 32:992-1006. [PMID: 37885109 DOI: 10.2174/0109298673266304231015070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
As the number of viruses, bacteria, and tumors that are resistant to drugs continues to rise, there is a growing need for novel lead compounds to treat them. Marine fungi, due to their unique secondary metabolic pathways and vast biodiversity, have become a crucial source for lead compounds in drug development. This review utilizes bibliometric methods to analyze the research status of natural products from marine fungi in the past decade, revealing the hotspots and trends in this field from Web of Science database. Furthermore, this review summarizes the biological activities and effects on molecular mechanisms of novel natural compounds isolated from marine fungi in the past five years. These novel compounds belong to six different structural classes, such as alkaloids, terpenoids, anthraquinones, polyketones, etc. They also exhibited highly potent biological properties, including antiviral, antitumor, antibacterial, antiinflammatory, and other properties. This review demonstrates the hotspots and trends of marine fungi research in recent years, as well as the variety of chemical structure and biological activities of their natural products, and it may provide guidance for those interested in discovering new drugs from marine fungi and specific targeting mechanisms.
Collapse
Affiliation(s)
- Rong Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Xiangru Zha
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| |
Collapse
|
4
|
Du HF, Zhang YH, Li W, Zhu H, Pang S, Song DB, Liu Z, Pittman CU, Cao F. Antifungal Activity and Mechanism of Diaporthein B against Botryosphaeria dothidea in Prevention of Apple Ring Rot. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20892-20904. [PMID: 39255954 DOI: 10.1021/acs.jafc.4c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Apple ring rot, caused by the pathogenic fungus Botryosphaeria dothidea, has inflicted substantial economic losses and caused significant food safety concerns. In this study, a pimarane-type diterpenoid, diaporthein B (DTB), isolated from a marine-derived fungus, exhibited significant antifungal activity against B. dothidea, with an EC50 value of 8.8 μg/mL. Transcriptome, metabolome, and physiological assays revealed that DTB may target mitochondria and disrupt the tricarboxylic acid (TCA) cycle and oxidative phosphorylation processes. This interference led to increased accumulation of reactive oxygen species and subsequent lipid peroxidation, ultimately inhibiting fungal growth. Furthermore, DTB exhibited an inhibitory potency against apple ring rot at a concentration of 31.2 μg/mL, achieving rates ranging from 67.7 to 81.6% across four distinct apple cultivars. These results indicated that DTB could serve as a novel fungicide for controlling apple ring rot in apple cultivation, transportation, and storage.
Collapse
Affiliation(s)
- Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Huajie Zhu
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Sen Pang
- Huanghe Science & Technology College, Zhengzhou 450005, China
| | - Da-Bin Song
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Yang G, Lin M, Kaliaperumal K, Lu Y, Qi X, Jiang X, Xu X, Gao C, Liu Y, Luo X. Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms. Mar Drugs 2024; 22:424. [PMID: 39330305 PMCID: PMC11433063 DOI: 10.3390/md22090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health.
Collapse
Affiliation(s)
- Guihua Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Yaqi Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinya Xu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
6
|
Jiang ZP, Su R, Chen MT, Li JY, Chen HY, Yang L, Liu FF, Liu J, Xu CJ, Li WS, Rao Y, Huang L. Ent-eudesmane sesquiterpenoids with anti-neuroinflammatory activity from the marine-derived fungus Eutypella sp. F0219. PHYTOCHEMISTRY 2024; 223:114121. [PMID: 38697242 DOI: 10.1016/j.phytochem.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
In this study, twenty-three ent-eudesmane sesquiterpenoids (1-23) including fifteen previously undescribed ones, named eutypelides A-O (1-15) were isolated from the marine-derived fungus Eutypella sp. F0219. Their planar structures and relative configurations were established by HR-ESIMS and extensive 1D and 2D NMR investigations. The absolute configurations of the previously undescribed compounds were determined by single-crystal X-ray diffraction analyses, modified Mosher's method, and ECD calculations. Structurally, eutypelide A (1) is a rare 1,10-seco-ent-eudesmane, whereas 2-15 are typically ent-eudesmanes with 6/6/-fused bicyclic carbon nucleus. The anti-neuroinflammatory activity of all isolated compounds (1-23) was accessed based on their ability to NO production in LPS-stimulated BV2 microglia cells. Compound 16 emerged as the most potent inhibitor. Further mechanistic investigation revealed that compound 16 modulated the inflammatory response by decreasing the protein levels of iNOS and increasing ARG 1 levels, thereby altering the iNOS/ARG 1 ratio and inhibiting macrophage polarization. qRT-PCR analysis showed that compound 16 reversed the LPS-induced upregulation of pro-inflammatory cytokines, including iNOS, TNF-α, IL-6, and IL-1β, at both the transcriptional and translational levels. These effects were linked to the inhibition of the NF-κB pathway, a key regulator of inflammation. Our findings suggest that compound 16 may be a potential structure basis for developing neuroinflammation-related disease therapeutic agents.
Collapse
Affiliation(s)
- Zhong-Ping Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Rui Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Meng-Ting Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Jun-Yi Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Han-Yu Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Lu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Fei-Fei Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Cong-Jun Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Wan-Shan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| | - Ling Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China.
| |
Collapse
|
7
|
Lee SR, Dayras M, Fricke J, Guo H, Balluff S, Schalk F, Yu JS, Jeong SY, Morgenstern B, Slippers B, Beemelmanns C, Kim KH. Molecular networking and computational NMR analyses uncover six polyketide-terpene hybrids from termite-associated Xylaria isolates. Commun Chem 2024; 7:129. [PMID: 38849519 PMCID: PMC11161606 DOI: 10.1038/s42004-024-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Fungi constitute the Earth's second most diverse kingdom, however only a small percentage of these have been thoroughly examined and categorized for their secondary metabolites, which still limits our understanding of the ecological chemical and pharmacological potential of fungi. In this study, we explored members of the co-evolved termite-associated fungal genus Xylaria and identified a family of highly oxygenated polyketide-terpene hybrid natural products using an MS/MS molecular networking-based dereplication approach. Overall, we isolated six no yet reported xylasporin derivatives, of which xylasporin A (1) features a rare cyclic-carbonate moiety. Extensive comparative spectrometric (HRMS2) and spectroscopic (1D and 2D NMR) studies allowed to determine the relative configuration across the xylasporin family, which was supported by chemical shift calculations of more than 50 stereoisomers and DP4+ probability analyses. The absolute configuration of xylasporin A (1) was also proposed based on TDDFT-ECD calculations. Additionally, we were able to revise the relative and absolute configurations of co-secreted xylacremolide B produced by single x-ray crystallography. Comparative genomic and transcriptomic analysis allowed us to deduce the putative biosynthetic assembly line of xylasporins in the producer strain X802, and could guide future engineering efforts of the biosynthetic pathway.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Marie Dayras
- Anti-infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sven Balluff
- Anti-infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1, 66123, Saarbrücken, Germany
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bernd Morgenstern
- Saarland University, Inorganic Solid-State Chemistry, Campus, Building C4 1, 66123, Saarbrücken, Germany
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Christine Beemelmanns
- Anti-infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, 66123, Saarbrücken, Germany.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Kang SJ, Zhao L, Wang H, Gao JM, Qi J. Chemical structures, biological activities, and biosynthetic analysis of secondary metabolites of the Diatrypaceae family: A comprehensive review. Mycology 2024; 15:322-344. [PMID: 39247891 PMCID: PMC11376284 DOI: 10.1080/21501203.2024.2341648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/07/2024] [Indexed: 09/10/2024] Open
Abstract
The family Diatrypaceae is a less well-known group within the order Xylariales (Ascomycota). Initially, the focus on its metabolites was related to the pathogenicity of one of its members, Eutypa lata. To date, a total of 254 natural products have been identified from Diatrypaceae strains. These compounds include terpenoids, sterols, polyketones, phenols, and acetylene aromatic compounds, which have shown anticancer, cytotoxic, anti-inflammatory, antimicrobial, and antiviral activities. The complex and diverse structural types, along with the diverse bioactivities, highlight the potential of Diatrypaceae as a valuable source of bioactive natural products. In this review, a deep analysis of the biosynthesis of pimarane diterpenes and scoparasin-type cytochalasins is provided, coupled with a compilation of the biosynthetic pathways of aromatic acetylene compounds in filamentous fungi. This comprehensive review not only enhances our understanding of the natural product chemistry, biological activities, and biosynthesis of secondary metabolites from the Diatrypaceae family but also promotes the exploitation and development of important bioactive compounds and potential strains.
Collapse
Affiliation(s)
- Shi-Jie Kang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Ling Zhao
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, China
| | - Haiqiang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
9
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
10
|
Wang Y, Ying Z, Li XM, Yang SQ, Li HL, Wang BG, Meng LH. Antimicrobial polyketides from Magellan Seamount-derived fungus Talaromyces scorteus AS-242. J Antibiot (Tokyo) 2023; 76:699-705. [PMID: 37848580 DOI: 10.1038/s41429-023-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Two new nonadride derivatives, namely, talarodrides G and H (1 and 2), and one new depsidone derivative, botryorhodine K (3), together with a known nonadride analogue (4), were characterized from the Magellan Seamount-derived fungus Talaromyces scorteus AS-242. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometry data analysis. X-ray crystallographic analysis of compounds 1 and 3 confirmed their structures and absolute configurations, representing the first characterized crystal structure of a nonadride-type polyketide. The isolated compounds exhibited potent antimicrobial activities against the pathogenic bacterium MRSA and V. parahaemolyticus and pathogenic fungi C. gloeosporioides, F. oxysporum, and F. proliferatum, with MIC values ranging from 1 to 64 μg ml-1.
Collapse
Affiliation(s)
- Ying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China.
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| |
Collapse
|
11
|
Shcherbinin VA, Nasibullina ER, Mendogralo EY, Uchuskin MG. Natural epoxyquinoids: isolation, biological activity and synthesis. An update. Org Biomol Chem 2023; 21:8215-8243. [PMID: 37812083 DOI: 10.1039/d3ob01141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Epoxyquinoids are of continuing interest due to their wide natural distribution and diverse biological activities, including, but not limited to, antibacterial, antifungal, anticancer, enzyme inhibitory, and others. The last review on their total synthesis was published in 2017. Since then, almost 100 articles have been published on their isolation from nature and their biological profile. In addition, the review specifically considers synthesis, including total and enantioselective, as well as the development of shorter approaches for the construction of epoxyquinoids with complex chemical architecture. Thus, this review focuses on progress in this area in order to stimulate further research.
Collapse
Affiliation(s)
- Vitaly A Shcherbinin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 119334 Moscow, Russian Federation
| | - Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| |
Collapse
|
12
|
Xiaoying M, Zhiming H, Tao Y, Jun X, Ying Z, Na G, Xun C, Guoli L, Hong W. Elucidating the molecular mechanisms underlying anti-inflammatory effects of Morchella esculenta in the arachidonic acid metabolic pathway by network pharmacology and molecular docking. Sci Rep 2023; 13:15881. [PMID: 37741847 PMCID: PMC10517965 DOI: 10.1038/s41598-023-42658-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Morchella esculenta is an edible fungus with a uniquely delicious flavor and remarkable benefits for health. Herein, the molecular mechanism underlying the anti-inflammatory effects of Morchella esculenta was elucidated using molecular docking and network pharmacology. NPASS, Super-pred, SEA, Swiss Target Prediction, GeneCards, DisGeNET, Omim database, and STRING platform were used to select anti-inflammatory targets and construct target protein interaction networks using the active ingredients of Morchella esculenta. The OmicShare cloud platform was used to analyze GO functions and KEGG pathways related to the target, and the AutoDock Vina software was used to perform molecular docking and molecular dynamics (MD) simulation on the main target. Based on Cytoscape's "Network Analysis", the degree was used to identify potential key targets, and different inflammatory transcriptome data sets were used to evaluate core targets showing clinical significance. The active ingredient of Morchella esculenta identified from the NPASS database was EOYA, which had 43 anti-inflammatory targets, including NR1I2, PTGS1, PTGS2, CYP4F2, CYP3A4, TLR4, MAPK1, PLA2G4A, and PTPN11, and was mainly implicated in arachidonic acid metabolism, vascular endothelial growth factor signal pathway, and sphingomyelin signal transduction pathway, indicating that the anti-inflammatory effects of EOYA were mainly related to these biological processes. The degree was used to select 9 potential effective targets, namely NR1I2, PTGS1, PTGS2, CYP4F2, CYP3A4, TLR4, MAPK1, PLA2G4A, and PTPN11, among which NR1I2, PTGS1, PTGS2, PLA2G4A, MAPK1, CYP3A4, and TLR4 showed clinical significance. Molecular docking results showed that (E)-Octadec-11-En-9-Ynoic Acid (EOYA) could spontaneously bind to the 9 core targets, and the binding fractions of NR1I2, PTGS1, PTGS2, CYP4F2, and CYP3A4 were the highest. The MD simulation results showed that EYOA did indeed bind well NR1I2 to PTGS2, and the complex has high stability. Morchella esculenta can regulate the activity of prostaglandin endoperoxide synthetase, and affect the biosynthesis of prostaglandins, thereby impacting the metabolic pathway of arachidonic acid.
Collapse
Affiliation(s)
- Ma Xiaoying
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Huo Zhiming
- Information Center, Guidaojiaotong Polytechnic Institute, Shenyang, 110161, China
| | - Yang Tao
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xiao Jun
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Zhao Ying
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Gong Na
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Chen Xun
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Liu Guoli
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Wang Hong
- The Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| |
Collapse
|
13
|
Yu HB, Ning Z, Hu B, Zhu YP, Lu XL, He Y, Jiao BH, Liu XY. Cytosporin Derivatives from Arctic-Derived Fungus Eutypella sp. D-1 via the OSMAC Approach. Mar Drugs 2023; 21:382. [PMID: 37504913 PMCID: PMC10381684 DOI: 10.3390/md21070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
A chemical investigation of the Arctic-derived fungus Eutypella sp. D-1 based on the OSMAC (one strain many compounds) approach resulted in the isolation of five cytosporin polyketides (compounds 1-3 and 11-12) from rice medium and eight cytosporins (compounds 2 and 4-11) from solid defined medium. The structures of the seven new compounds, eutypelleudesmane A (1), cytosporin Y (2), cytosporin Z (3), cytosporin Y1 (4), cytosporin Y2 (5), cytosporin Y3 (6), and cytosporin E1 (7), were elucidated by analyzing their detailed spectroscopic data. Structurally, cytosporin Y1 (4) may be a key intermediate in the biosynthesis of the isolated cytosporins, rather than an end product. Compound 1 contained a unique skeleton formed by the ester linkage of two moieties, cytosporin F (12) and the eudesmane-type sesquiterpene dihydroalanto glycol. Additionally, the occurrence of cyclic carbonate moieties in compounds 6 and 7 was found to be rare in nature. The antibacterial, immunosuppressive, and cytotoxic activities of all compounds derived from Eutypella sp. D-1 were evaluated. Unfortunately, only compounds 3, 6, 8, and 10-11 displayed immunosuppressive activity, with inhibitory rates of 62.9%, 59.5%, 67.8%, 55.8%, and 68.7%, respectively, at a concentration of 5 μg/mL.
Collapse
Affiliation(s)
- Hao-Bing Yu
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China
| | - Zhe Ning
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China
| | - Bo Hu
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China
| | - Yu-Ping Zhu
- Basic Medical Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Xiao-Ling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Ying He
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China
| | - Bing-Hua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Xiao-Yu Liu
- Naval Medical Center of PLA, Department of Marine Biomedicine and Polar Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|