1
|
Pierce A, Skonberg D, Calder B, Dumas R, Jin Q. Development of a Whey Protein Recovery Process Using Sugar Kelp ( Saccharina latissima) Extracts. Foods 2024; 13:3663. [PMID: 39594077 PMCID: PMC11594094 DOI: 10.3390/foods13223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Whey is the largest waste product of the cheese-making industry and the current methods of extracting the nutrients from it are costly and inefficient. This study assessed the feasibility of using crude polysaccharides to flocculate proteins from liquid whey waste. The flocculants used were a sugar kelp (Saccharina latissima) extract, as well as commercial seaweed polysaccharides, alginate and k-carrageenan, to recover proteins from the liquid whey waste. Physicochemical and functional parameters including protein content, protein recovery efficiency, mineral content, total phenolic content (TPC), antioxidant capacity, color, water- and oil-holding capacity, gelling capacity, foaming activity and stability, and emulsifying activity and stability were tested on the resulting flocculates. The yield of the dried flocculates by use of alginate, the sugar kelp polysaccharide extract (SKPE), and carrageenan were 1.66, 0.98, and 1.22 g/100 g of liquid whey with protein contents of 27.4%, 45.5%, and 37.5%, respectively. The protein recovery efficiency from the whey was 57.5%, 56.2%, and 57.9% using alginate, SKPE, and carrageenan, respectively. The alginate flocculate had the highest oil-holding capacity and foaming abilities while the carrageenan flocculate had the best gelling ability and the highest emulsifying activity and stability. TPC and antioxidant activity were highest in the SKPE flocculate. All three flocculates presented slightly different compositional and functional qualities, which could be used for a variety of products. This study showed that seaweed polysaccharides present a simple and effective way to extract protein from liquid whey waste while creating a functional and high-protein ingredient.
Collapse
Affiliation(s)
- Alex Pierce
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| | - Denise Skonberg
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| | - Beth Calder
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
- Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Rob Dumas
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| | - Qing Jin
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; (A.P.); (D.S.); (B.C.); (R.D.)
| |
Collapse
|
2
|
Jeong S, Lee S, Lee G, Hyun J, Ryu B. Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions. Int J Mol Sci 2024; 25:11771. [PMID: 39519327 PMCID: PMC11546589 DOI: 10.3390/ijms252111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Fucoidan, a sulfated polysaccharide found primarily in brown algae, is known for exhibiting various biological activities, many of which have been attributed to its sulfate content. However, recent advancements in techniques for analyzing polysaccharide structures have highlighted that not only the sulfate groups but also the composition, molecular weight, and structures of the polysaccharides and their monomers play a crucial role in modulating biological effects. This review comprehensively provides the monosaccharide composition, degree of sulfation, molecular weight distribution, and linkage of glycosidic bonds of fucoidan, focusing on the diversity of its biological activities based on various characteristics. The implications of these findings for future applications and potential therapeutic uses of fucoidan are also discussed.
Collapse
Affiliation(s)
- Seungjin Jeong
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seokmin Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Geumbin Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
| | - Jimin Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
| | - Bomi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Bajwa B, Xing X, Serin SC, Hayes M, Terry SA, Gruninger RJ, Abbott DW. Characterization of Unfractionated Polysaccharides in Brown Seaweed by Methylation-GC-MS-Based Linkage Analysis. Mar Drugs 2024; 22:464. [PMID: 39452872 PMCID: PMC11509683 DOI: 10.3390/md22100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
This study introduces a novel approach to analyze glycosidic linkages in unfractionated polysaccharides from alcohol-insoluble residues (AIRs) of five brown seaweed species. GC-MS analysis of partially methylated alditol acetates (PMAAs) enables monitoring and comparison of structural variations across different species, harvest years, and tissues with and without blanching treatments. The method detects a wide array of fucose linkages, highlighting the structural diversity in glycosidic linkages and sulfation position in fucose-containing sulfated polysaccharides. Additionally, this technique enhances cellulose quantitation, overcoming the limitations of traditional monosaccharide composition analysis that typically underestimates cellulose abundance due to incomplete hydrolysis of crystalline cellulose. The introduction of a weak methanolysis-sodium borodeuteride reduction pretreatment allows for the detection and quantitation of uronic acid linkages in alginates.
Collapse
Affiliation(s)
- Barinder Bajwa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Spencer C. Serin
- Spoitz Enterprises Inc., 215-1610 Pandora Street, Vancouver, BC V5L 1L6, Canada;
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Stephanie A. Terry
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| |
Collapse
|
4
|
Silli EK, Zheng Z, Zhou X, Li M, Tang J, Guo R, Tan C, Wang Y. Design optimization of Fucoidan-coating Cationic Liposomes for enhance Gemcitabine delivery. Invest New Drugs 2024; 42:518-530. [PMID: 39154300 DOI: 10.1007/s10637-024-01455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024]
Abstract
Obstacles facing chemotherapeutic drugs for cancers led scientists to load Gemcitabine (GEM) into nanocarriers like liposomes, known for their nontoxicity profile and targeting capacity. The liposomal nanostructures containing GEM were coated with Fucoidan (FU) due to its anti-tumor properties by targeting cancer cells. Thus four different cationic liposomes formulations were prepared by thin-film hydration method in optimal conditions: DOTAP (formulation A); DPPC/DOTAP (4:1 molar ratio, formulation B), DPPC/DMPC/DOTAP (4:1:1 molar ratio, formulation C) and DPPC/DMPC/DOTAP/DSPE-mPEG2000 (4:1:1:0.1 molar ratio, formulation D). They were studied to identify lipid-compositions offering effective GEM-entrapment and successful coating of FU on the liposome surface. Additional qualitative characteristics, such as particle size, polydispersity index, zeta potential, stability and in vitro drug release were then evaluated. Formulation C gave the best GEM-entrapment efficiency (EE) but formed aggregates when coated with FU, giving non-homogenous large size particles then not suitable for effective delivery. It was the same situation with formulation A and B. Only the formulation D showed a good GEM-EE (> 80%) and affinity by successful coating FU from three different algae species. The PEGylated formulation D coated of FU, with regard to storage stability and drug release studies, revealed to be a promising approach on design of optimal drug delivery system.
Collapse
Affiliation(s)
- Epiphane K Silli
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | | | - Xintao Zhou
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengfei Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jiali Tang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ruizhe Guo
- School of Chinese Medicine Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Segaran TC, Azra MN, Mohd Noor MI, Danish-Daniel M, Burlakovs J, Lananan F, Xu J, Kari ZA, Wei LS. Knowledge mapping analysis of the global seaweed research using CiteSpace. Heliyon 2024; 10:e28418. [PMID: 38560172 PMCID: PMC10981124 DOI: 10.1016/j.heliyon.2024.e28418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Seaweed research has gained substantial momentum in recent years, attracting the attention of researchers, academic institutions, industries, policymakers, and philanthropists to explore its potential applications and benefits. Despite the growing body of literature, there is a paucity of comprehensive scientometric analyses, highlighting the need for an in-depth investigation. In this study, we utilized CiteSpace to examine the global seaweed research landscape through the Web of Science Core Collection database, assessing publication trends, collaboration patterns, network structures, and co-citation analyses across 48,278 original works published since 1975. Our results demonstrate a diverse and active research community, with a multitude of authors and journals contributing to the advancement of seaweed science. Thematic co-citation cluster analysis identified three primary research areas: "Coral reef," "Solar radiation," and "Mycosporine-like amino acid," emphasizing the multidisciplinary nature of seaweed research. The increasing prominence of "Chemical composition" and "Antioxidant" keywords indicates a burgeoning interest in characterizing the nutritional value and health-promoting properties of seaweed. Timeline co-citation analysis unveils that recent research priorities have emerged around the themes of coral reefs, ocean acidification, and antioxidants, underlining the evolving focus and interdisciplinary approach of the field. Moreover, our analysis highlights the potential of seaweed as a functional food product, poised to contribute significantly to addressing global food security and sustainability challenges. This study underscores the importance of bibliometric analysis in elucidating the global seaweed research landscape and emphasizes the need for sustained knowledge exchange and collaboration to drive the field forward. By revealing key findings and emerging trends, our research offers valuable insights for academics and stakeholders, fostering a more profound understanding of seaweed's potential and informing future research endeavors in this promising domain.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Mohd Iqbal Mohd Noor
- Faculty of Business Management, Universiti Teknologi MARA (UiTM) (Pahang), 27600, Raub, Pahang, Malaysia
- Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
| | - Fathurrahman Lananan
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, 21300, Malaysia
| | - Juntian Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, No. 59 Cangwu Road, Haizhou District, Lianyungang City, Jiangsu, China
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| |
Collapse
|
6
|
Circuncisão AR, Ferreira SS, Silva AMS, Coimbra MA, Cardoso SM. Fucus vesiculosus-Rich Extracts as Potential Functional Food Ingredients: A Holistic Extraction Approach. Foods 2024; 13:540. [PMID: 38397517 PMCID: PMC10888237 DOI: 10.3390/foods13040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Brown macroalgae are rich sources of nutrients and health-promoting compounds. Nevertheless, their consumption is still limited by their strong organoleptic characteristics, thus requiring the development of extraction strategies to profit from their nutritional value. To fulfil this, two sequential extraction approaches were developed, differing in the solvent used in the first extraction step, water in approach 1 or food-grade ethanol in approach 2, to obtain economic and affordable extracts rich in specific compounds from Fucus vesiculosus. The use of water in the first step of extraction allowed us to recover water-soluble phlorotannins, laminarans and mannuronic-rich alginates, making the subsequent 70% ethanol extract richest in fucoxanthin (0.07% algae DW), and the hot water fractions purest in fucoidans and alginates with a lower mannuronic-to-guluronic (M/G) ratio (2.91). Conversely, when beginning extraction procedures with 96% ethanol, the recovered yields of phlorotannins increased (0.43 g PGE/100 g algae DW), but there was a concomitant seven-fold decrease in the recovery of fucoxanthin in the subsequent 70% ethanol extract. This approach also led to less pure hot water fractions containing fucoidans, laminarans and alginates with a higher M/G ratio (5.50). Overall, this work unveiled the potential of the first extraction steps in sustainable and holistic cascade strategies to modulate the composition of food-grade extracts, creating prospects of their application as tailored functional ingredients in food products.
Collapse
Affiliation(s)
| | | | | | | | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.C.); (S.S.F.); (A.M.S.S.); (M.A.C.)
| |
Collapse
|
7
|
Flórez-Fernández N, Ferreira-Anta T, Queffelec J, Ingrez IB, Buján M, Muiños A, Domínguez H, Torres MD. Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features. Mar Drugs 2023; 21:618. [PMID: 38132939 PMCID: PMC10744486 DOI: 10.3390/md21120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding microparticles containing the antioxidant fractions using two different carriers, mannitol and alginate. The fundamental chemical characteristics of seaweed and the extracts obtained via sonication, as well as the antioxidant properties of the latter, were analyzed. The highest TEAC (Trolox equivalent antioxidant capacity) value was identified for the extracts subjected to the longest processing time using ultrasound-assisted extraction (240 min). A similar yield of microparticle formulation (around 60%) and load capacity (about 85%) were identified with mannitol and alginate as carriers. Color testing of the creams exhibited small total color differences. The rheological results indicated that the testing temperature, from 5 to 45 °C, notably influenced the apparent viscosity of the matrices. All creams were adequately fitted with the two parameters of the Ostwald-de Waele model, with the flow consistency index following an Arrhenius dependency with the testing temperature. Neither hysteresis nor water syneresis was observed in the proposed cosmetics during 6 months of cold storage at 4-6 °C.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Tania Ferreira-Anta
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Julie Queffelec
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - Isa B. Ingrez
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain; (I.B.I.); (M.B.); (A.M.)
| | - Herminia Domínguez
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| | - María Dolores Torres
- CINBIO, Chemical Engineering Department, Faculty of Science, Campus Ourense, Universidade de Vigo, As Lagoas S/N, 32004 Ourense, Spain; (N.F.-F.); (T.F.-A.); (J.Q.); (M.D.T.)
| |
Collapse
|
8
|
Coreta-Gomes F, Silva IMV, Nunes C, Marin-Montesinos I, Evtuguin D, Geraldes CFGC, João Moreno M, Coimbra MA. Contribution of non-ionic interactions on bile salt sequestration by chitooligosaccharides: Potential hypocholesterolemic activity. J Colloid Interface Sci 2023; 646:775-783. [PMID: 37229995 DOI: 10.1016/j.jcis.2023.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Chitooligosaccharides have been suggested as cholesterol reducing ingredients mostly due to their ability to sequestrate bile salts. The nature of the chitooligosaccharides-bile salts binding is usually linked with the ionic interaction. However, at physiological intestinal pH range (6.4 to 7.4) and considering chitooligosaccharides pKa, they should be mostly uncharged. This highlights that other type of interaction might be of relevance. In this work, aqueous solutions of chitooligosaccharides with an average degree of polymerization of 10 and 90 % deacetylated, were characterized regarding their effect on bile salt sequestration and cholesterol accessibility. Chitooligosaccharides were shown to bind bile salts to a similar extent as the cationic resin colestipol, both decreasing cholesterol accessibility as measured by NMR at pH 7.4. A decrease in the ionic strength leads to an increase in the binding capacity of chitooligosaccharides, in agreement with the involvement of ionic interactions. However, when the pH is decreased to 6.4, the increase in charge of chitooligosaccharides is not followed by a significant increase in bile salt sequestration. This corroborates the involvement of non-ionic interactions, which was further supported by NMR chemical shift analysis and by the negative electrophoretic mobility attained for the bile salt-chitooligosaccharide aggregates at high bile salt concentrations. These results highlight that chitooligosaccharides non-ionic character is a relevant structural feature to aid in the development of hypocholesterolemic ingredients.
Collapse
Affiliation(s)
- Filipe Coreta-Gomes
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Inês M V Silva
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Cláudia Nunes
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ildefonso Marin-Montesinos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Dmitry Evtuguin
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos F G C Geraldes
- Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal.
| | - Maria João Moreno
- Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|