1
|
Kapoor DU, Pareek A, Sharma S, Prajapati BG, Thanawuth K, Sriamornsak P. Alginate gels: Chemistry, gelation mechanisms, and therapeutic applications with a focus on GERD treatment. Int J Pharm 2025; 675:125570. [PMID: 40199431 DOI: 10.1016/j.ijpharm.2025.125570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
Alginate, a natural polysaccharide derived primarily from marine algae, has become popular in biomedical research due to its versatile gelation properties and biocompatibility. This review explores the chemistry, gelation mechanisms, and therapeutic applications of alginate gels, with a particular focus on their role in gastroesophageal reflux disease (GERD) management. Alginate's structure, comprised of guluronic and mannuronic acid blocks, allows for gel formation by ionic cross-linking with divalent cations like calcium ions, generating a stable "egg-box" structure. The effects of pH, temperature, and ion concentration on gelation are explored, as well as other gel forms such as in situ and heat-sensitive gels. Alginate is widely used in the medical and pharmaceutical areas to promote tissue engineering through cell encapsulation and scaffolding, as well as in drug delivery systems for controlled and targeted release. In GERD therapy, alginate produces a gel raft that inhibits acid reflux, providing an effective alternative to proton pump inhibitors. Alginate-based products have demonstrated clinical success, strengthening alginate's medicinal promise. The review also discusses alginate-related issues, such as source variability and stability, as well as innovative modifications to improve treatment effects. These improvements establish alginate as a potential material for customized medication and tailored delivery systems.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Anil Pareek
- Department of Pharmaceutics, Lachoo Memorial College of Science and Technology (Autonomous), Jodhpur, Rajasthan 342003, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| | | | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| |
Collapse
|
2
|
Daub CD, Michaels AL, Mabate B, Mkabayi L, Edkins AL, Pletschke BI. Exploring the Inhibitory Potential of Sodium Alginate Against Digestive Enzymes Linked to Obesity and Type 2 Diabetes. Molecules 2025; 30:1155. [PMID: 40076378 PMCID: PMC11902270 DOI: 10.3390/molecules30051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are major health concerns worldwide, often managed with treatments that have significant limitations and side effects. This study examines the potential of sodium alginates, extracted from Ecklonia radiata and Sargassum elegans, to inhibit digestive enzymes involved in managing these conditions. We chemically characterized the sodium alginates and confirmed their structural integrity using FTIR, NMR, and TGA. The focus was on evaluating their ability to inhibit key digestive enzymes relevant to T2DM (α-amylase, α-glucosidase, sucrase, maltase) and obesity (pancreatic lipase). Enzyme inhibition assays revealed that these sodium alginates moderately inhibit α-glucosidase, maltase, and lipase by up to 43%, while showing limited effects on sucrase and α-amylase. In addition, the sodium alginates did not affect glucose uptake in human colorectal cells (HCT116), indicating they do not impact cellular glucose absorption. In summary, while the observed enzyme inhibition was moderate, the targeted inhibition of α-glucosidase, maltase, and lipase suggests that sodium alginates could be beneficial for managing postprandial hyperglycemia and lipid absorption in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Chantal D. Daub
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa; (C.D.D.); (A.L.M.); (B.M.); (L.M.)
| | - Arryn L. Michaels
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa; (C.D.D.); (A.L.M.); (B.M.); (L.M.)
| | - Blessing Mabate
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa; (C.D.D.); (A.L.M.); (B.M.); (L.M.)
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa; (C.D.D.); (A.L.M.); (B.M.); (L.M.)
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa;
| | - Brett I. Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa; (C.D.D.); (A.L.M.); (B.M.); (L.M.)
| |
Collapse
|
3
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Lukova P, Kokova V, Baldzhieva A, Murdjeva M, Katsarov P, Delattre C, Apostolova E. Alginate from Ericaria crinita Possesses Antioxidant Activity and Attenuates Systemic Inflammation via Downregulation of Pro-Inflammatory Cytokines. Mar Drugs 2024; 22:482. [PMID: 39590762 PMCID: PMC11595431 DOI: 10.3390/md22110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Alginates are anionic polysaccharides present in the cell walls of brown seaweeds. Various biological activities of alginate and its derivatives have been described. In this study, we assessed the potential of alginate obtained from Ericaria crinita (formerly Cystoseira crinita) to scavenge free radicals and function as a ferric ion reductor. The anti-inflammatory effect on the serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment was also examined. Ericaria crinita alginate showed antioxidant activities of IC50 = 505 µg/mL (DPPH) and OD700 > 2 (ferric reducing power). A significant decrease in serum levels of IL-1β was observed only in animals treated with the polysaccharide at a dose of 100 mg/kg bw. Both doses of E. crinita alginate (25 and 100 mg/kg bw) significantly reduced the serum concentrations of pro-inflammatory cytokines TNF-α and IL-6, but no statistical significance was observed in the levels of the anti-inflammatory cytokine IL-10. Our findings show the potential of E. crinita alginate to act as an antioxidant and anti-inflammatory agent. It is likely that the exhibited antioxidant ability of the polysaccharide contributes to its antiphlogistic effects. More in-depth studies are needed to fully understand the specific mechanisms and the molecular pathways involved in these activities.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Medicine, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Plamen Katsarov
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Rahman AM, Akib YM, Bedsole CO, Pei Z, Shaw BD, Ufodike CO, Castell-Perez E. Effects of Incorporating Ionic Crosslinking on 3D Printing of Biomass-Fungi Composite Materials. Biomimetics (Basel) 2024; 9:411. [PMID: 39056852 PMCID: PMC11274481 DOI: 10.3390/biomimetics9070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Biomass-fungi composite materials primarily consist of biomass particles (sourced from agricultural residues) and a network of fungal hyphae that bind the biomass particles together. These materials have potential applications across diverse industries, such as packaging, furniture, and construction. 3D printing offers a new approach to manufacturing parts using biomass-fungi composite materials, as an alternative to traditional molding-based methods. However, there are challenges in producing parts with desired quality (for example, geometric accuracy after printing and height shrinkage several days after printing) by using 3D printing-based methods. This paper introduces an innovative approach to enhance part quality by incorporating ionic crosslinking into the 3D printing-based methods. While ionic crosslinking has been explored in hydrogel-based bioprinting, its application in biomass-fungi composite materials has not been reported. Using sodium alginate (SA) as the hydrogel and calcium chloride as the crosslinking agent, this paper investigates their effects on quality (geometric accuracy and height shrinkage) of 3D printed samples and physiochemical characteristics (rheological, chemical, and texture properties) of biomass-fungi composite materials. Results show that increasing SA concentration led to significant improvements in both geometric accuracy and height shrinkage of 3D printed samples. Moreover, crosslinking exposure significantly enhanced hardness of the biomass-fungi mixture samples prepared for texture profile analysis, while the inclusion of SA notably improved cohesiveness and springiness of the biomass-fungi mixture samples. Furthermore, Fourier transform infrared spectroscopy confirms the occurrence of ionic crosslinking within 3D printed samples. Results from this study can be used as a reference for developing new biomass-fungi mixtures for 3D printing in the future.
Collapse
Affiliation(s)
- Al Mazedur Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.)
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (B.D.S.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.)
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (B.D.S.)
| | - Chukwuzubelu Okenwa Ufodike
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA;
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Elena Castell-Perez
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
6
|
Rahman AM, Bedsole CO, Akib YM, Hamilton J, Rahman TT, Shaw BD, Pei Z. Effects of Sodium Alginate and Calcium Chloride on Fungal Growth and Viability in Biomass-Fungi Composite Materials Used for 3D Printing. Biomimetics (Basel) 2024; 9:251. [PMID: 38667263 PMCID: PMC11047919 DOI: 10.3390/biomimetics9040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
To combat climate change, one approach is to manufacture products from biomass-fungi composite materials instead of petroleum-based plastics. These products can be used in packaging, furniture, and construction industries. A 3D printing-based manufacturing method was developed for these biomass-fungi composite materials, eliminating the need for molds, and enabling customized product design. However, previous studies on the 3D printing-based method showed significant shrinkage of printed samples. In this paper, an approach is proposed to reduce the shrinkage by incorporating ionic crosslinking into biomass-fungi composite materials. This paper reports two sets of experiments regarding the effects of sodium alginate (SA) and calcium chloride (CaCl2) on fungal growth and fungal viability. The first set of experiments was conducted using Petri dishes with fungi isolated from colonized biomass-fungi material and different concentrations of SA and CaCl2. Fungal growth was measured by the circumference of fungal colonies. The results showed that concentrations of SA and CaCl2 had significant effects on fungal growth and no fungal growth was observed on Petri dishes with 15% CaCl2. Some of these Petri dishes were also observed under confocal microscopy. The results confirmed the differences obtained by measuring the circumference of fungal colonies. The second set of experiments was conducted using Petri dishes with biomass-fungi mixtures that were treated with different concentrations of SA and exposure times in a CaCl2 (crosslinking) solution. Fungal viability was measured by counting colony-forming units. The results showed that the addition of the SA solution and exposure times in the crosslinking solution had statistically significant effects on fungal viability. The 2SA solution was prepared by dissolving 2 g of SA in 100 mL of water, the 5SA solution was prepared by dissolving 5 g of SA in 100 mL of water, and the crosslinking solution was prepared by dissolving 5 g of CaCl2 in 100 mL of water. The results also showed that fungal viability was not too low in biomass-fungi mixtures that included 2SA solution and were exposed to the crosslinking solution for 1 min.
Collapse
Affiliation(s)
- Al Mazedur Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (J.H.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| | - Jillian Hamilton
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (J.H.)
| | - Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (J.H.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| |
Collapse
|
7
|
Adão P, Calado MDL, Fernandes W, Alves LG, Côrte-Real L, Guedes M, Baptista R, Bernardino R, Gil MM, Campos MJ, Bernardino S. Use of Limestone Sludge in the Preparation of ɩ-Carrageenan/Alginate-Based Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1668. [PMID: 38612183 PMCID: PMC11012425 DOI: 10.3390/ma17071668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
The use of processed limestone sludge as a crosslinking agent for films based on Na-alginate and ɩ-carrageenan/Na-alginate blends was studied. Sorbitol was tested as a plasticizer. The produced gel formulations included alginate/sorbitol and carrageenan/alginate/sorbitol mixtures, with tested sorbitol concentrations of 0.0, 0.5 and 1.0 wt%. The limestone sludge waste obtained from the processing of quarried limestone was converted into an aqueous solution of Ca2+ by dissolution with mineral acid. This solution was then diluted in water and used to induce gel crosslinking. The necessity of using sorbitol as a component of the crosslinking solution was also assessed. The resulting films were characterized regarding their dimensional stability, microstructure, chemical structure, mechanical performance and antifungal properties. Alginate/sorbitol films displayed poor dimensional stability and were deemed not viable. Carrageenan/alginate/sorbitol films exhibited higher dimensional stability and smooth and flat surfaces, especially in compositions with 0.5 wt% sorbitol. However, an increasing amount of plasticizer appears to result in severe surface cracking, the development of a segregation phenomenon affecting carrageenan and an overall decrease in films' mechanical resistance. Although further studies regarding film composition-including plasticizer fraction, film optimal thickness and film/mold material interaction-are mandatory, the attained results show the potential of the reported ɩ-carrageenan/alginate/sorbitol films to be used towards the development of viable films derived from algal polysaccharides.
Collapse
Grants
- UIDB/04292/2020, UIDP/04292/2020, LA/P/0069/2020, UIDB/00100/2020, UIDP/00100/2020, LA/P/0056/2020, UIDB/04540/2020, UIDB/50022/2020 Fundação para a Ciência e Tecnologia
- INOVMINERAL 4.0 - Tecnologias Avançadas e Software para os recursos Minerais, project number 46083 FEDER - Fundo Europeu de Desenvolvimento Regional, in the scope of the Programa Portugal 2020, COMPETE 2020 - Programa Operacional
Collapse
Affiliation(s)
- Pedro Adão
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
| | - Maria da Luz Calado
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
| | - Wilson Fernandes
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
| | - Luís G. Alves
- Centro de Química Estrutural, Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (L.C.-R.)
| | - Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (L.C.-R.)
| | - Mafalda Guedes
- UnIRE, ISEL, Instituto Politécnico de Lisboa, Av. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- LaPMET-CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ricardo Baptista
- UnIRE, ISEL, Instituto Politécnico de Lisboa, Av. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Raul Bernardino
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTM), Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria M. Gil
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
| | - Maria Jorge Campos
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
| | - Susana Bernardino
- MARE-ARNET and Escola de Turismo e Tecnologias do Mar, Instituto Politécnico de Leiria, 2520-614 Peniche, Portugal (R.B.); (M.M.G.); (M.J.C.)
| |
Collapse
|
8
|
Seo JW, Jung WK, Park YH, Bae H. Development of cultivable alginate fibers for an ideal cell-cultivated meat scaffold and production of hybrid cultured meat. Carbohydr Polym 2023; 321:121287. [PMID: 37739499 DOI: 10.1016/j.carbpol.2023.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Slaughtering animals for meat pose several challenges, including environmental pollution and ethical concerns. Scaffold-based cell-cultivated meat has been proposed as a solution to these problems, however, the utilization of animal-derived materials for scaffolding or the high cost of production remains a significant challenge. Alginate is an ideal material for cell-cultivated meat scaffolds but has poor cell adhesion properties. To address this issue, we achieved 82 % cell adhesion coverage by controlling the specific structure generated during the ionic crosslinking process of alginate. Post 11 days of culture; we evaluated cell adhesion, differentiation, and aligned cell networks. The cell growth increased by 12.7 % compared to the initial seeding concentration. Finally, we created hybrid cell-cultivated meat by combining single-cell protein from mycelium and cell-cultivated meat. This is non-animal based, edible, cost-effective, and has a desirable texture by blending cell-cultivated meat with a meat analogue. In summary, the creation of improved alginate fibers can effectively tackle various obstacles encountered in the manufacturing of cell-cultivated meat. This includes enhancing cell adhesion, reducing costs, and streamlining the production procedure.
Collapse
Affiliation(s)
- Jeong Wook Seo
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea
| | - Woo Kyung Jung
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea
| | - Yong Ho Park
- NoAH Biotech Co., Ltd., Suwon-si, Gyeonggi-do 16614, Republic of Korea; Department of Microbiology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Zueva OS, Khair T, Kazantseva MA, Latypova L, Zuev YF. Ions-Induced Alginate Gelation According to Elemental Analysis and a Combinatorial Approach. Int J Mol Sci 2023; 24:16201. [PMID: 38003391 PMCID: PMC10671519 DOI: 10.3390/ijms242216201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study considers the potential of elemental analysis of polysaccharide ionotropic gels in elucidating the junction zones for different divalent cations. The developed algorithm ensures the correct separation of contributions from physically adsorbed and structure-forming ionic compounds, with the obtained results scaled to alginate C12 block. Possible versions of chain association into dimers and their subsequent integration into flat junction zones were analyzed within the framework of the "egg-box" model. The application of combinatorial analysis made it possible to derive theoretical relations to find the probability of various types of egg-box cell occurrences for alginate chains with arbitrary monomeric units ratio μ = M/G, which makes it possible to compare experimental data for alginates of different origins. Based on literature data and obtained chemical formulas, the possible correspondence of concrete biopolymer cells to those most preferable for filling by alkaline earth cations was established. The identified features of elemental composition suggest the formation of composite hydrated complexes with the participation of transition metal cations. The possibility of quantitatively assessing ordered secondary structures formed due to the physical sorption of ions and molecules from environment, correlating with the sorption capabilities of Me2+ alginate, was established.
Collapse
Affiliation(s)
- Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia; (O.S.Z.); (T.K.)
| | - Tahar Khair
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia; (O.S.Z.); (T.K.)
| | - Mariia A. Kazantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
- School of Applied Mathematics, HSE University, 34 Tallinskaya Street, 123458 Moscow, Russia
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
| |
Collapse
|