1
|
Wang Z, Zhao M, Yu Y, Kong F, Lin N, Wang Q. Marine Fungal Metabolites as Potential Antidiabetic Agents: A Comprehensive Review of Their Structures and Enzyme Inhibitory Activities. Mar Drugs 2025; 23:142. [PMID: 40278263 PMCID: PMC12028496 DOI: 10.3390/md23040142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetes mellitus has emerged as a global public health crisis, with Type 2 diabetes (T2D) constituting over 90% of cases. Current treatments are palliative, primarily focusing on blood glucose modulation. This review systematically evaluates 181 bioactive compounds isolated from 66 marine fungal strains for their inhibitory activities against key diabetes-related enzymes, including α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), dipeptidyl peptidase-4 (DPP-4), glycogen synthase kinase-3β (GSK-3β), and fatty acid-binding protein 4 (FABP4). These compounds, categorized into polyketides, alkaloids, terpenoids, and lignans, exhibit multitarget engagement and nanomolar-to-micromolar potency. The review highlights the potential of marine fungal metabolites as novel antidiabetic agents, emphasizing their structural novelty and diverse mechanisms of action. Future research should focus on overcoming challenges related to yield and extraction, leveraging advanced technologies such as genetic engineering and synthetic biology to enhance drug development.
Collapse
Affiliation(s)
- Zimin Wang
- Department of Pediatric intensive Care Medicine, Hainan Women and Children’s Medical Center, Haikou 570100, China;
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of of Marine Science and Biotechnology, Guangxi Minzu University, Nanning 530006, China;
| | - Meirong Zhao
- College of Food and Pharmaceutical Engineering, Guangxi Vocational University of Agriculture, Nanning 530006, China;
| | - Yunxia Yu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of of Marine Science and Biotechnology, Guangxi Minzu University, Nanning 530006, China;
| | - Fandong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of of Marine Science and Biotechnology, Guangxi Minzu University, Nanning 530006, China;
| | - Nanxin Lin
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of of Marine Science and Biotechnology, Guangxi Minzu University, Nanning 530006, China;
| | - Qi Wang
- Department of Pediatric intensive Care Medicine, Hainan Women and Children’s Medical Center, Haikou 570100, China;
| |
Collapse
|
2
|
Ma XY, Wang HN, Sun LX, Sun J, Jin SH, Dai FX, Sai CM, Zhang Z. Bioactive steroids from marine-derived fungi: a review (2015-2023). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-27. [PMID: 39989344 DOI: 10.1080/10286020.2025.2464690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Marine fungi, rich in unique secondary metabolites with diverse activities, are a valuable source for novel lead compounds. Steroids, a prominent class of bioactive compounds from marine fungi, have been extensively studied for their diverse pharmacological properties. This review describes the structural diversity, bioactivities, and sources of 175 marine fungal steroids (2015-2023), mainly from Aspergillus, Penicillium, Talaromyces, etc., in seaweed, mangroves, sediments, and marine animals like sponges and corals. Among them, 74 steroids exhibit antibacterial, antitumor, enzyme inhibitory, antiviral, and other activities, providing valuable leads for steroid drug development and advancing marine pharmaceutical research.
Collapse
Affiliation(s)
- Xue-Yang Ma
- School of Pharmacy, Binzhou Medical University, Yantai264003, China
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Huan-Nan Wang
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Li-Xiang Sun
- School of Pharmacy, Binzhou Medical University, Yantai264003, China
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Jin Sun
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Shi-Hao Jin
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Fang-Xu Dai
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Chun-Mei Sai
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao276826, China
| |
Collapse
|
3
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2025; 42:257-297. [PMID: 39911015 DOI: 10.1039/d4np00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Covering: January to the end of December 2023This review covers the literature published in 2023 for marine natural products (MNPs), with 582 citations (541 for the period January to December 2023) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1220 in 340 papers for 2023), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the progress in the study of prokaryote involvement in macro-invertebrate MNP production is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Lee MA, Kang JS, Yang JW, Lee HS, Heo CS, Park SJ, Shin HJ. Meirols A-C: Bioactive Catecholic Compounds from the Marine-Derived Fungus Meira sp. 1210CH-42. Mar Drugs 2024; 22:87. [PMID: 38393058 PMCID: PMC10890530 DOI: 10.3390/md22020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Three new catecholic compounds, named meirols A-C (2-4), and one known analog, argovin (1), were isolated from the marine-derived fungus Meira sp. 1210CH-42. Their structures were determined by extensive analysis of 1D, 2D NMR, and HR-ESIMS spectroscopic data. Their absolute configurations were elucidated based on ECD calculations. All the compounds exhibited strong antioxidant capabilities with EC50 values ranging from 6.01 to 7.47 μM (ascorbic acid, EC50 = 7.81 μM), as demonstrated by DPPH radical scavenging activity assays. In the α-glucosidase inhibition assay, 1 and 2 showed potent in vitro inhibitory activity with IC50 values of 184.50 and 199.70 μM, respectively (acarbose, IC50 = 301.93 μM). Although none of the isolated compounds exhibited cytotoxicity against one normal and six solid cancer cell lines, 1 exhibited moderate cytotoxicity against the NALM6 and RPMI-8402 blood cancer cell lines with GI50 values of 9.48 and 21.00 μM, respectively. Compound 2 also demonstrated weak cytotoxicity against the NALM6 blood cancer cell line with a GI50 value of 29.40 μM.
Collapse
Affiliation(s)
- Min Ah Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (M.A.L.); (H.-S.L.); (C.-S.H.)
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Republic of Korea; (J.S.K.); (J.-W.Y.)
| | - Jeong-Wook Yang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Republic of Korea; (J.S.K.); (J.-W.Y.)
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (M.A.L.); (H.-S.L.); (C.-S.H.)
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Chang-Su Heo
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (M.A.L.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sun Joo Park
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea; (M.A.L.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|