1
|
He Q, Zhang X, Xu H, Wang X, Zhang X, Hao Y, Song X, Cao X. Cultivation of high-protein Euglena gracilis for enhanced protein production under inorganic nitrogen sources: mechanisms revealed by proteomics. BIORESOURCE TECHNOLOGY 2025; 430:132560. [PMID: 40258496 DOI: 10.1016/j.biortech.2025.132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Amid global food shortage, alternative cost-effective protein sources are urgently needed for aquaculture and animal feed. Without a rigid cell wall, Euglena gracilis provides extractable, digestible proteins, and its high productivity makes it an ideal feed source. This study investigates the effects of different inorganic nitrogen sources on the biomass and biochemical composition of E. gracilis, and discusses the mechanisms of its nutrient transformation via proteomics. Results show ammonium nitrogen optimizes growth and protein accumulation by serving as an energy-efficient precursor for biomolecule synthesis compared to nitrate. Additionally, sulfate supplies sulfur for amino acid synthesis, and ammonium sulfate further enhances protein production. Under high-protein conditions, lipids and pigments increase while paramylon decreases significantly, underscoring nitrogen's role in carbon allocation and energy metabolism. This study establishes a metabolic framework for nitrogen-sulfur coordinated regulation of protein synthesis in E. gracilis, paving the way for its industrial application as a next-generation protein resource.
Collapse
Affiliation(s)
- Qingyi He
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xueshi Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hui Xu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinyi Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianru Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingshu Hao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Paterson S, Alonso-Pintre L, Morato-López E, González de la Fuente S, Gómez-Cortés P, Hernández-Ledesma B. Microalga Nannochloropsis gaditana as a Sustainable Source of Bioactive Peptides: A Proteomic and In Silico Approach. Foods 2025; 14:252. [PMID: 39856918 PMCID: PMC11765504 DOI: 10.3390/foods14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The impact of the world's growing population on food systems and the role of dietary patterns in the management of non-communicable diseases underscore the need to explore sustainable and dietary protein sources. Although microalgae have stood out as alternative sources of proteins and bioactive peptides, some species such as Nannochloropsis gaditana remain unexplored. This study aimed to characterize N. gaditana's proteome and evaluate its potential as a source of bioactive peptides by using an in silico approach. A total of 1955 proteins were identified and classified into functional groups of cellular components, molecular functions, and biological processes. In silico gastrointestinal digestion of identified proteins demonstrated that 202 hydrophobic and low-molecular-size peptides with potential bioactivity were released. Among them, 27 exhibited theorical antioxidant, antihypertensive, antidiabetic, anti-inflammatory, and/or antimicrobial activities. Seven of twenty-seven peptides showed ≥20% intestinal absorption, suggesting potential systemic effects, while the rest could act at local level. Molecular docking demonstrated strong affinities with key enzymes such as MPO, ACE, and DPPIV. Resistance to the digestion, capacity to be absorbed, and multifunctionality were demonstrated for peptide FIPGL. This study highlights N. gaditana's potential as a sustainable source of novel potential bioactive peptides with promising local and systemic biological effects.
Collapse
Affiliation(s)
- Samuel Paterson
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| | - Laura Alonso-Pintre
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| | - Esperanza Morato-López
- Proteomics Core Facility, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Sandra González de la Fuente
- Biocomputational Core Facility, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| |
Collapse
|
3
|
Chen Q, Liu M, Mi W, Wan D, Song G, Huang W, Bi Y. Regulation Mechanism of Gibberellic Acid-3 for Astaxanthin Biosynthesis in Heterotrophic Growing Chromochloris zofingiensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25574-25585. [PMID: 39513753 DOI: 10.1021/acs.jafc.4c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Chromochloris zofingiensis has been proven as a potential resource for large-scale astaxanthin production, but little information on phytohormones for its growth and astaxanthin accumulation could be obtained. This study explored the impact of gibberellic acid-3 (GA3) on growth and astaxanthin biosynthesis in heterotrophic C. zofingiensis. After 6 days of cultivation with GA3, biomass and astaxanthin yields in 7.5 L fermenters reached 268.5 g·L-1 and 0.34 g·L-1, respectively, which were 6% and 89% higher than those in the control. GA3 changed transcription levels of genes linked to carbon metabolism, lipid metabolism, astaxanthin production, and ABC transporters. Genes related to astaxanthin biosynthesis, such as phytoene synthase (PSY), phytoene desaturase (PDS), beta-carotenoid hydroxylase (CHYb), and beta-carotenoid ketolase (BKT), were up-regulated under GA3 induction. The enhancement of carbon metabolism and lipid metabolism led to elevated consumption of substrates and generation of reducing power, thus facilitating astaxanthin biosynthesis. By using GA3 and arginine together, the astaxanthin yield increased to 0.39 g·L-1, which was 18% higher than that obtained under GA3 induction. It could be concluded that GA3 showed significant effects on astaxanthin biosynthesis. This research proposed novel feasible approaches to enhance astaxanthin production in heterotrophic C. zofingiensis.
Collapse
Affiliation(s)
- Qiaohong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingmeng Liu
- School of Civil Engineering, Hubei Engineering University, Xiaogan 432000, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weichao Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Zhang WH, Gao JW, Lau CC, Jiang ZF, Yeong YS, Mok WJ, Zhou W. Effects of different trophic conditions on total fatty acids, amino acids, pigment and gene expression profiles in Euglena gracilis. World J Microbiol Biotechnol 2024; 40:325. [PMID: 39294488 DOI: 10.1007/s11274-024-04130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Euglena gracilis is a unique microalga that lacks a cell wall and is able to grow under different trophic culture conditions. In this study, cell growth, biomass production, and changes in the ultrastructure of E. gracilis cells cultivated photoautotrophically, mixotrophically, and under sequential-heterotrophy-photoinduction (SHP) were assessed. Mixotrophy induced the highest cell growth and biomass productivity (6.27 ± 0.59 mg/L/d) in E. gracilis, while the highest content of fatty acids, 2.69 ± 0.04% of dry cell weight (DCW) and amino acids, 38.16 ± 0.08% of DCW was obtained under SHP condition. E. gracilis also accumulated significantly higher saturated fatty acids and lower unsaturated fatty acids when cultivated under SHP condition. Transcriptomic analysis showed that the expression of photosynthetic genes (PsbA, PsbC, F-type ATPase alpha and beta) was lower, carbohydrate and protein synthetic genes (glnA, alg14 and fba) were expressed higher in SHP-culture cells when compared to other groups. Different trophic conditions also induced changes in the cell ultrastructure, where paramylon and starch granules were more abundant in SHP-cultured cells. The findings generated in this study illustrated that aerobic SHP cultivation of E. gracilis possesses great potential in human and animal feed applications.
Collapse
Affiliation(s)
- Wen Hui Zhang
- Tianjin Key Laboratory of Aqua-Ecology & Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Jin Wei Gao
- Tianjin Key Laboratory of Aqua-Ecology & Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Cher Chien Lau
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Zhi Fei Jiang
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin, 300193, China
| | - Yik Sung Yeong
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Wen Jye Mok
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Wenli Zhou
- Tianjin Key Laboratory of Aqua-Ecology & Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
5
|
Gao L, Qin Y, Zhou X, Jin W, He Z, Li X, Wang Q. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172167. [PMID: 38580118 DOI: 10.1016/j.scitotenv.2024.172167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.
Collapse
Affiliation(s)
- Le Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yujia Qin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
6
|
Farjallah A, Fillion M, Guéguen C. Metabolic responses of Euglena gracilis under photoheterotrophic and heterotrophic conditions. Protist 2024; 175:126035. [PMID: 38688055 DOI: 10.1016/j.protis.2024.126035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.
Collapse
Affiliation(s)
- Asma Farjallah
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Fillion
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Céline Guéguen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
7
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|