1
|
Kim HJ, Kim SY, Kim GE, Jin HJ. Association between genetic polymorphisms of synaptophysin (SYP) gene and attention deficit hyperactivity disorder in Korean subjects. Genes Genomics 2023; 45:1097-1105. [PMID: 37133725 DOI: 10.1007/s13258-023-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a common childhood neurodevelopmental disorder, and the prevalence of ADHD among Korean children has attained about 8.5%. Various genetic factors can contribute to the etiology of the disease. Synaptophysin (SYP) regulates neurotransmitter release and synaptic plasticity. According to previous studies, several genetic polymorphisms on SYP were risk factors for ADHD. OBJECTIVE We investigated the effect of the SYP gene polymorphisms (rs2293945 and rs3817678) on ADHD in Korean children. METHODS In this study, we examined the case-control study in 150 ADHD cases and 322 controls. The genotyping of SYP gene polymorphisms was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS Significant associations in the genotype and genetic models of SYP rs2293945 polymorphism between girls with ADHD and control girls were found. The girls with ADHD having the C/T genotype were significantly associated with ADHD. In the dominant model of rs3817678, C/T + T/T genotypes were significantly associated with ADHD. The haplotype analyses showed significant associations from haplotypes of rs2293945 T-rs3817678 G and rs2293945 C-rs3817678 A. CONCLUSION Our results imply that the SYP rs2293945 C/T polymorphism in female participants may provide a possible effect on the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Seong Yong Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Ga Eun Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Han Jun Jin
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea.
| |
Collapse
|
2
|
Zhao B, Cao Y, Zhang L, Zhang W. Parenting Practices and Adolescent Effortful Control: MAOA T941G Gene Polymorphism as a Moderator. Front Psychol 2020; 11:60. [PMID: 32132943 PMCID: PMC7040235 DOI: 10.3389/fpsyg.2020.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Effortful control (EC) plays a crucial role in psychopathology disorders. Emerging studies have paid attention to the effects of G × E interaction on EC. The present study investigated interactions between monoamine oxidase A (MAOA) T941G polymorphism with parenting practices on EC in a sample of 1,531 Chinese adolescents. The adolescents completed the Early Adolescent Temperament Questionnaire-Revised (EATQ-R) EC scale and the Parenting Style Index provided during the study to assess EC and parenting practices, respectively. MAOA T941G polymorphism exerted no effect on adolescent EC; however, results revealed that the MAOA gene interacted with parental acceptance/involvement in their associations with EC among boys. Specifically, although increased levels of parental acceptance/involvement benefited all adolescents, boys with G alleles of the MAOA gene exhibited higher sensitivity to parental acceptance/involvement, compared with T carriers; this interaction was not significant among girls. This study is the first to identify MAOA × parenting interaction on adolescent EC, further contributing to the literature in MAOA gene-EC.
Collapse
Affiliation(s)
- Bao Zhao
- Department of Psychology, Shandong Normal University, Jinan, China
| | | | | | - Wenxin Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Blum K, Baron D, Lott L, Ponce JV, Siwicki D, Boyett B, Steinberg B, Modestino EJ, Fried L, Hauser M, Simpatico T, Downs BW, McLaughlin T, Hajela R, Badgaiyan RD. In Search of Reward Deficiency Syndrome (RDS)-free Controls: The "Holy Grail" in Genetic Addiction Risk Testing. CURRENT PSYCHOPHARMACOLOGY 2020; 9:7-21. [PMID: 32432025 PMCID: PMC7236426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The search for an accurate, gene-based test to identify heritable risk factors for Reward Deficiency Syndrome (RDS) was conducted based on hundreds of published studies about the role of dopamine in addictive behaviors, including risk for drug dependence and compulsive/impulsive behavior disorders. The term RDS was first coined by Blum's group in 1995 to identify a group of behaviors with a common neurobiological mechanism associated with a polymorphic allelic propensity for hypodopaminergia. OBJECTIVES To outline the process used to select risk alleles of reward genes for the Genetic Addiction Risk Score (GARS) test. Consequently, to address the limitations caused by inconsistent results that occur in many case-control behavioral association studies. These limitations are perhaps due to the failure of investigators to adequately screen controls for drug and alcohol use disorder, and any of the many RDS behaviors, including nicotine dependence, obesity, pathological gambling, and internet gaming addiction. METHODS Review of the literature related to the function of risk alleles of reward genes associated with hypodopaminergia relevant case-control association studies for the selection of alleles to be measured by the Genetic Addiction Risk Score (GARS) test. RESULTS The prevalence of the DRD2 A1 allele in unscreened controls (33.3%), compared to "Super-Controls" [highly screened RDS controls (3.3%) in proband and family] is used to exemplify a possible solution. CONCLUSION Unlike one gene-one disease (OGOD), RDS is polygenetic, and very complex. In addition, any RDS-related behaviors must be eliminated from the control group in order to obtain the best possible statistical analysis instead of comparing the phenotype with disease-ridden controls.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate School of Biomedical Science, Western University Health Sciences, Pomona, CA, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
- Division of Clinical Neurology, PATH Foundation, New York, NY, USA
- Dominion Diagnostics, North Kingston, RI, USA
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
- Division of Neuroscience & Addiction Therapy Research, Pathway HealthCare, Birmingham, AL, USA
- Victory Nutrition International, Inc., Lederach, PA, USA
| | - David Baron
- Graduate School of Biomedical Science, Western University Health Sciences, Pomona, CA, USA
| | - Lisa Lott
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
| | - Jessica V. Ponce
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
| | - David Siwicki
- Division of Precision Addiction Management, Geneus Health, San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience & Addiction Therapy Research, Pathway HealthCare, Birmingham, AL, USA
| | | | | | - Lyle Fried
- Transformations Treatment Center, Delray Beach, FL, USA
| | - Mary Hauser
- Dominion Diagnostics, North Kingston, RI, USA
| | - Thomas Simpatico
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Bill W. Downs
- Victory Nutrition International, Inc., Lederach, PA, USA
| | | | - Raju Hajela
- Department of Family Medicine, Cummings School of Medicine, University of Calgary, Calgary, CN, Canada
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, and Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Harneit A, Braun U, Geiger LS, Zang Z, Hakobjan M, van Donkelaar MMJ, Schweiger JI, Schwarz K, Gan G, Erk S, Heinz A, Romanczuk-Seiferth N, Witt S, Rietschel M, Walter H, Franke B, Meyer-Lindenberg A, Tost H. MAOA-VNTR genotype affects structural and functional connectivity in distributed brain networks. Hum Brain Mapp 2019; 40:5202-5212. [PMID: 31441562 PMCID: PMC6864897 DOI: 10.1002/hbm.24766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Previous studies have linked the low expression variant of a variable number of tandem repeat polymorphism in the monoamine oxidase A gene (MAOA‐L) to the risk for impulsivity and aggression, brain developmental abnormalities, altered cortico‐limbic circuit function, and an exaggerated neural serotonergic tone. However, the neurobiological effects of this variant on human brain network architecture are incompletely understood. We studied healthy individuals and used multimodal neuroimaging (sample size range: 219–284 across modalities) and network‐based statistics (NBS) to probe the specificity of MAOA‐L‐related connectomic alterations to cortical‐limbic circuits and the emotion processing domain. We assessed the spatial distribution of affected links across several neuroimaging tasks and data modalities to identify potential alterations in network architecture. Our results revealed a distributed network of node links with a significantly increased connectivity in MAOA‐L carriers compared to the carriers of the high expression (H) variant. The hyperconnectivity phenotype primarily consisted of between‐lobe (“anisocoupled”) network links and showed a pronounced involvement of frontal‐temporal connections. Hyperconnectivity was observed across functional magnetic resonance imaging (fMRI) of implicit emotion processing (pFWE = .037), resting‐state fMRI (pFWE = .022), and diffusion tensor imaging (pFWE = .044) data, while no effects were seen in fMRI data of another cognitive domain, that is, spatial working memory (pFWE = .540). These observations are in line with prior research on the MAOA‐L variant and complement these existing data by novel insights into the specificity and spatial distribution of the neurogenetic effects. Our work highlights the value of multimodal network connectomic approaches for imaging genetics.
Collapse
Affiliation(s)
- Anais Harneit
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marina Hakobjan
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Marjolein M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gabriela Gan
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|